alpine regions
Recently Published Documents


TOTAL DOCUMENTS

400
(FIVE YEARS 152)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yingying Chen ◽  
Huan Yang ◽  
Gensheng Bao ◽  
Xiaopan Pang ◽  
Zhenggang Guo

Abstract. The activity of small mammalian herbivores influences grassland ecosystem services in arid and semi-arid regions. This study took plateau pika (Ochotona curzoniae) as example animal to investigate the effect of small mammalian herbivores on meadow ecosystem services in alpine regions. In this study, a home-range scale was used measure the forage availability, water conservation, carbon sequestration and soil nutrient maintenance services (total nitrogen, phosphorus, and potassium) of topsoil layer; and a quadrat scale was used to assess the biodiversity conservation service of alpine meadows. This study showed that plateau pika presence led to lower forage availability and water conservation services, and led to higher biodiversity conservation, carbon sequestration, soil nitrogen and phosphorus maintenance services of meadow ecosystem, whereas it had no impact on soil potassium maintenance service of meadow ecosystem in alpine regions. This study further found that the forage availability, biodiversity conservation, and soil nutrient maintenance services of meadow ecosystem in alpine regions firstly increased, and later decreased as the disturbance intensity of plateau pikas increased, whereas the water conservation service tended to decrease with the increasing disturbance intensity of plateau pikas. These results not only present a possible pattern of plateau pikas influencing the ecosystem services of meadow ecosystem in alpine regions, and consummate the small mammalian herbivores in relation to grassland ecosystem services.


2022 ◽  
Vol 82 ◽  
Author(s):  
F. A. Kazmi ◽  
F. Shafique ◽  
M. U. Hassan ◽  
S. Khalid ◽  
N. Ali ◽  
...  

Abstract Snow leopard (Panthera unica) is a felid which lives in the highly rugged areas of alpine regions in different mountain ranges of South and Central Asia. This solitary animal needs large spaces for its ranges but due to climate change and relatively faster rate of global warming in South Asian mountain ranges, its habitat is going to shrink and fragment by tree-line shifts and change in hydrology of the area. Vegetative modification of montane flora and competition with domestic goats will create its prey’s population to decline along with a chance of a direct conflict and competition with the common leopard. Common leopard being more adaptable, grouped, and larger in size can be a significant stressor for a smaller and solitary snow leopard. Habitat would shrink, and snow leopard can possibly move upslope or northward to central Asian ranges and their predicted migratory patterns are unknown.


2022 ◽  
Vol 275 ◽  
pp. 108347
Author(s):  
Yuzhuo Bao ◽  
Jinpu Xing ◽  
Yi Liang ◽  
Zhipeng Ren ◽  
Lianshuang Fu ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 179
Author(s):  
Kesar Chand ◽  
Jagdish Chandra Kuniyal ◽  
Shruti Kanga ◽  
Raj Paul Guleria ◽  
Gowhar Meraj ◽  
...  

The extensive work on the increasing burden of aerosols and resultant climate implications shows a matter of great concern. In this study, we investigate the aerosol optical depth (AOD) variations in the Indian Himalayan Region (IHR) between its plains and alpine regions and the corresponding consequences on the energy balance on the Himalayan glaciers. For this purpose, AOD data from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD-L3), Aerosol Robotic Network (AERONET), India, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) were analyzed. Aerosol radiative forcing (ARF) was assessed using the atmospheric radiation transfer model (RTM) integrated into AERONET inversion code based on the Discrete Ordinate Radiative Transfer (DISORT) module. Further, air mass trajectory over the entire IHR was analyzed using a hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. We estimated that between 2001 and 2015, the monthly average ARF at the surface (ARFSFC), top of the atmosphere (ARFTOA), and atmosphere (ARFATM) were −89.6 ± 18.6 Wm−2, −25.2 ± 6.8 Wm−2, and +64.4 ± 16.5 Wm−2, respectively. We observed that during dust aerosol transport days, the ARFSFC and TOA changed by −112.2 and −40.7 Wm−2, respectively, compared with low aerosol loading days, thereby accounting for the decrease in the solar radiation by 207% reaching the surface. This substantial decrease in the solar radiation reaching the Earth’s surface increases the heating rate in the atmosphere by 3.1-fold, thereby acting as an additional forcing factor for accelerated melting of the snow and glacier resources of the IHR.


2021 ◽  
Author(s):  
Francesca Carletti ◽  
Adrien Michel ◽  
Francesca Casale ◽  
Daniele Bocchiola ◽  
Michael Lehning ◽  
...  

Abstract. This study compares the ability of two degree-day models (Poli-Hydro and a degree-day implementation of Alpine3D) and one full energy-balance melt model (Alpine3D) to predict the discharge on two partly glacierized Alpine catchments of different size and intensity of exploitation, under present conditions and climate change as projected at the end of the century. For present climate, the magnitude of snow melt predicted by Poli-Hydro is sensibly lower than the one predicted by the other melt schemes, and the melting season is delayed by one month. This difference can be explained by the combined effect of the reduced complexity of the melting scheme and the reduced computational temporal resolution. The degree-day implementation of Alpine3D reproduces a melt season closer to the one obtained with its full solver; in fact, the onset of the degree-day mode still depends upon the full energy-balance solver, thus not bringing any particular benefit in terms of inputs and computational load, unlike with Poli-Hydro. Under climate change conditions, Alpine3D is more sensitive than Poli-Hydro, reproducing discharge curves and volumes shifted by one month earlier as a consequence of the earlier onset of snow melt. Despite their benefits, the coarser temporal computational resolution and the fixed monthly degree-days of simpler melt models like Poli-Hydro make them controversial to use for climate change applications with respect to energy-balance ones. Nevertheless, under strong river regulation, the influence of calibration might even overshadow the benefits of a full energy-balance scheme.


2021 ◽  
Vol 25 (11) ◽  
pp. 5937-5950
Author(s):  
Elena Leonarduzzi ◽  
Brian W. McArdell ◽  
Peter Molnar

Abstract. Landslides are an impacting natural hazard in alpine regions, calling for effective forecasting and warning systems. Here we compare two methods (physically based and probabilistic) for the prediction of shallow rainfall-induced landslides in an application to Switzerland, with a specific focus on the value of antecedent soil wetness. First, we show that landslide susceptibility predicted by the factor of safety in the infinite slope model is strongly dependent on soil data inputs, limiting the hydrologically active range where landslides can occur to only ∼20 % of the country with typical soil parameters and soil depth models, not accounting for uncertainty. Second, we find the soil saturation estimate provided by a conceptual hydrological model (PREVAH) to be more informative for landslide prediction than that estimated by the physically based coarse-resolution model (TerrSysMP), which we attribute to the lack of temporal variability and coarse spatial resolution in the latter. Nevertheless, combining the soil water state estimates in TerrSysMP with the infinite slope approach improves the separation between landslide triggering and non-triggering rainfall events. Third, we demonstrate the added value of antecedent soil saturation in combination with rainfall thresholds. We propose a sequential threshold approach, where events are first split into dry and wet antecedent conditions by an N d (day) antecedent soil saturation threshold, and then two different total rainfall–duration threshold curves are estimated. This, among all different approaches explored, is found to be the most successful for landslide prediction.


2021 ◽  
Vol 113 ◽  
pp. 103775
Author(s):  
Monika Rawat ◽  
Annika K. Jägerbrand ◽  
Yang Bai ◽  
Juha M. Alatalo

2021 ◽  
Author(s):  
Philipp Wanner ◽  
Noemi Buri ◽  
Kevin Wyss ◽  
Andreas Zischg ◽  
Rolf Weingartner ◽  
...  

Abstract. This study aims to determine the contribution of glacial meltwater to streams in mountainous regions based on stable water isotope measurements (δ18O and δ2H). For this purpose, three partially glaciated catchments were selected as the study area in the central Swiss Alps being representative of catchments that are used for hydropower energy production in Alpine regions. The glacial meltwater contribution to the catchments’ stream discharges was evaluated based on high-resolution δ18O and δ2H measurements of the end-members that contribute to the stream discharge (ice, rain, snow) and of the discharging streams. The glacial meltwater contribution to the stream discharges could be unequivocally quantified after the snowmelt in August and September when most of the annual glacial meltwater discharge occurs. In August and September, the glacial meltwater contribution to the stream discharges corresponds to up to 95 ± 2 % and to 28.7 % ± 5 % of the total annual discharge in the evaluated catchments. The high glacial meltwater contribution demonstrates that the mountainous stream discharges in August and September will probably strongly decrease in the future due to global warming-induced deglaciation, which will be, however, likely compensated by higher discharge rates in winter and spring. Nevertheless, the changing mountainous streamflow regimes in the future will pose a challenge for hydropower energy production in the mountainous areas. Overall, this study provides a successful example of an Alpine catchment monitoring strategy to quantify the glacial meltwater contribution to stream discharges based on stable isotope water data, which leads to a better validation of existing modelling studies and which can be adapted to other mountainous regions.


2021 ◽  
Vol 5 (S3) ◽  
Author(s):  
K Ashok ◽  
M Babu

Markhor (MK) is a wild goat and one of Pakistan's (PK’s) most stunning wild animal species. The species likes to live on difficult and steep cliffs of the mountains to guard themselves from assaults by snow leopards (Pantheraunica) and wolves (Canis lupus). These high cliffs also offer a safe haven from the hunters who want at least one MK pride in their life of hunting. The male MK is prettier when the horns are long and twisted. These species play an important part in the mountain's food web to ensuring that they remain in shape for nature and for people alike. PK contains 7 Caprinae populations from the hills of the Southern Desert up to the extreme Alpine regions of the Himalayas, with 11 subspecies occupying habitats. The majority of people in Caprinae in the world live in PK at lower altitudes use steep cliffs, open forest covered with cows, providing rock bluffs as escape land. In general, the flare horn MK (C. f.falconeri) and the direct horned MK are split into two categories; (C. f.megaceros). 


2021 ◽  
Vol 13 (19) ◽  
pp. 3986
Author(s):  
Peijie Wei ◽  
Shengyun Chen ◽  
Minghui Wu ◽  
Yinglan Jia ◽  
Haojie Xu ◽  
...  

Global alpine ecosystems contain a large amount of carbon, which is sensitive to global change. Changes to alpine carbon sources and sinks have implications for carbon and climate feedback processes. To date, few studies have quantified the spatial-temporal variations in ecosystem carbon storage and its response to global change in the alpine regions of the Qinghai-Tibet Plateau (QTP). Ecosystem carbon storage in the northeastern QTP between 2001 and 2019 was simulated and systematically analyzed using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Furthermore, the Hurst exponent was obtained and used as an input to perform an analysis of the future dynamic consistency of ecosystem carbon storage. Our study results demonstrated that: (1) regression between the normalized difference vegetation index (NDVI) and biomass (coefficient of determination (R2) = 0.974, p < 0.001), and between NDVI and soil organic carbon density (SOCD) (R2 = 0.810, p < 0.001) were valid; (2) the spatial distribution of ecosystem carbon storage decreased from the southeast to the northwest; (3) ecosystem carbon storage increased by 13.69% between 2001 and 2019, and the significant increases mainly occurred in the low-altitude regions; (4) climate and land use (LULC) changes caused increases in ecosystem carbon storage of 4.39 Tg C and 2.25 Tg C from 2001 to 2019, respectively; and (5) the future trend of ecosystem carbon storage in 92.73% of the study area shows high inconsistency but that in 7.27% was consistent. This study reveals that climate and LULC changes have positive effects on ecosystem carbon storage in the alpine regions of the QTP, which will provide valuable information for the formulation of eco-environmental policies and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document