Surface enhanced Raman spectroscopy: A re-examination of the role of surface roughness and electrochemical anodization

1981 ◽  
Vol 104 (2-3) ◽  
pp. 419-434 ◽  
Author(s):  
Steven G. Schultz ◽  
Maria Janik-Czachor ◽  
R.P. Van Duyne
RSC Advances ◽  
2016 ◽  
Vol 6 (116) ◽  
pp. 115284-115289 ◽  
Author(s):  
Annette Dowd ◽  
Mathias Geisler ◽  
Shaoli Zhu ◽  
Michelle L. Wood ◽  
Michael B. Cortie

Large more reproducibly fabricated microstructures can also provide significant Raman signal enhancementviausually neglected multipolar plasmon resonances.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1554 ◽  
Author(s):  
Yaqi Huang ◽  
Dajie Lin ◽  
Mengting Li ◽  
Dewu Yin ◽  
Shun Wang ◽  
...  

A highly sensitive immunoassay of biomarkers has been achieved using 4-mercaptobenzoic acid-labeled Ag@Au core–shell porous nanocage tags and α-fetoprotein immuno-sensing chips. The Ag@Au porous nanocages were uniquely synthesized by using an Ag core as a self-sacrificial template and reducing agent, where the slow reaction process led to the formation of a porous Au layer. The size of the remaining Ag core and surface roughness of the Au shell were controlled by adjusting the chloroauric acid concentration. The porous cage exhibited excellent surface-enhanced Raman spectroscopy (SERS) activity, presumably due to a synergetic interaction between newly generated hot spots in the rough Au shell and the retained SERS activity of the Ag core. Using α-fetoprotein as a model analyte for immunoassay, the SERS signal had a wide linear range of 0.20 ng mL−1 to 500.0 ng mL−1 with a detection limit of 0.12 ng mL−1. Without the need of further signal amplification, the as-prepared Ag@Au bimetallic nanocages can be directly used for highly sensitive SERS assays of other biomarkers in biomedical research, diagnostics, etc.


2017 ◽  
Vol 121 (38) ◽  
pp. 21045-21056 ◽  
Author(s):  
Aida C. Hernández-Arteaga ◽  
Francisco C. Delgado-Nieblas ◽  
Hiram J. Ojeda-Galván ◽  
J. Jesús Velázquez-Salazar ◽  
Ekaterina Vinogradova ◽  
...  

1989 ◽  
Vol 43 (7) ◽  
pp. 1180-1187 ◽  
Author(s):  
Steven A. Soper ◽  
Theodore Kuwana

The influence of a supporting matrix in surface-enhanced Raman spectroscopy (SERS) has been investigated. The support matrices were conventional TLC plates onto which Ag colloidal hydrosols mixed with the dye pararosaniline had been deposited. The protocol of preparation of the Ag sol as well as the type of TLC plate had a profound effect upon the intensity of the SERS signals of pararosaniline. The Ag sol and the TLC plate that resulted in the maximum SERS intensities yielded a detection limit of ∼ 108 femtomols (33 pg) of dye deposited onto the TLC plate. Deposition of the dye/sol mixture onto the supporting matrix also resulted in stable SERS signals for extended periods of time, in contrast to the solution-phase case, where the signal is only transient in nature. In order to obtain the SERS spectra, a remote sensing Raman spectrometer was constructed and is described.


ACS Catalysis ◽  
2013 ◽  
Vol 3 (11) ◽  
pp. 2430-2435 ◽  
Author(s):  
Kimberly N. Heck ◽  
Benjamin G. Janesko ◽  
Gustavo E. Scuseria ◽  
Naomi J. Halas ◽  
Michael S. Wong

Sign in / Sign up

Export Citation Format

Share Document