Characterization of solid—solid phase transitions: Differential scanning calorimetry vs. adiabatic calorimetry

1984 ◽  
Vol 74 (1-3) ◽  
pp. 55-62 ◽  
Author(s):  
M.A. White
Author(s):  
Andrey A. Petrov ◽  
Eugene A. Goodilin ◽  
Alexey B. Tarasov ◽  
Vladimir A. Lazarenko ◽  
Pavel V. Dorovatovskii ◽  
...  

At a temperature of 100 K, CH5N2+·I−(I), crystallizes in the monoclinic space groupP21/c. The formamidinium cation adopts a planar symmetrical structure [the r.m.s. deviation is 0.002 Å, and the C—N bond lengths are 1.301 (7) and 1.309 (8) Å]. The iodide anion does not lie within the cation plane, but deviates from it by 0.643 (10) Å. The cation and anion ofIform a tight ionic pair by a strong N—H...I hydrogen bond. In the crystal ofI, the tight ionic pairs form hydrogen-bonded zigzag-like chains propagating toward [20-1]viastrong N—H...I hydrogen bonds. The hydrogen-bonded chains are further packed in stacks along [100]. The thermal behaviour ofIwas studied by different physicochemical methods (thermogravimetry, differential scanning calorimetry and powder diffraction). Differential scanning calorimetry revealed three narrow endothermic peaks at 346, 387 and 525 K, and one broad endothermic peak at ∼605 K. The first and second peaks are related to solid–solid phase transitions, while the third and fourth peaks are attributed to the melting and decomposition ofI. The enthalpies of the phase transitions at 346 and 387 K are estimated as 2.60 and 2.75 kJ mol−1, respectively. The X-ray powder diffraction data collected at different temperatures indicate the existence ofIas the monoclinic (100–346 K), orthorhombic (346–387 K) and cubic (387–525 K) polymorphic modifications.


2015 ◽  
Vol 44 (42) ◽  
pp. 18447-18458 ◽  
Author(s):  
M. Węcławik ◽  
P. Szklarz ◽  
W. Medycki ◽  
R. Janicki ◽  
A. Piecha-Bisiorek ◽  
...  

Dipyrazolium iodide triiodide, [C3N2H5+]2[I−·I3−], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy.


2009 ◽  
Vol 1242 ◽  
Author(s):  
E. I. Martínez-Ordoñez ◽  
E. Marín ◽  
J. A. I. Díaz-Góngora ◽  
A. Calderón

ABSTRACTIn this work we report about the design and construction of a simple and cheap calorimeter for phase transitions monitoring using Peltier elements and based in the well known inverse (front) photopyroelectric method for thermophysical characterization of materials. We describe its application for the detection of phase transitions in chocolate samples, as an alternative, for example, to the most widely used and more expensive Differential Scanning Calorimetry technique. The manufacture of chocolate requires an understanding of the chemistry and the physical properties of the product. Thus the involved problems during the confection process are those of the so-called materials science. Among them, those related with tempering are of particular importance. Because the fats in cocoa butter experience the so-called polymorphous crystallization, the primary purpose of tempering is to assure that only the best form is present in the final product. One way to characterize this is by measurement of the temperature dependence of the thermal properties of the chocolate and the monitoring of the temperature at which phase transitions take place. We show that the photopyroelectric method, aided with Peltier cells temperature control, can be a useful choice for this purpose.


2010 ◽  
Vol 114 (3) ◽  
pp. 1294-1300 ◽  
Author(s):  
Petros Chatzigeorgiou ◽  
Nikos Papakonstantopoulos ◽  
Nikolitsa Tagaroulia ◽  
Evangelos Pollatos ◽  
Pantelis Xynogalas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document