Photopyroelectric Calorimeter for Phase Transitions Monitoring: Application to Chocolate

2009 ◽  
Vol 1242 ◽  
Author(s):  
E. I. Martínez-Ordoñez ◽  
E. Marín ◽  
J. A. I. Díaz-Góngora ◽  
A. Calderón

ABSTRACTIn this work we report about the design and construction of a simple and cheap calorimeter for phase transitions monitoring using Peltier elements and based in the well known inverse (front) photopyroelectric method for thermophysical characterization of materials. We describe its application for the detection of phase transitions in chocolate samples, as an alternative, for example, to the most widely used and more expensive Differential Scanning Calorimetry technique. The manufacture of chocolate requires an understanding of the chemistry and the physical properties of the product. Thus the involved problems during the confection process are those of the so-called materials science. Among them, those related with tempering are of particular importance. Because the fats in cocoa butter experience the so-called polymorphous crystallization, the primary purpose of tempering is to assure that only the best form is present in the final product. One way to characterize this is by measurement of the temperature dependence of the thermal properties of the chocolate and the monitoring of the temperature at which phase transitions take place. We show that the photopyroelectric method, aided with Peltier cells temperature control, can be a useful choice for this purpose.

2013 ◽  
Vol 17 (06n07) ◽  
pp. 573-586 ◽  
Author(s):  
Çiğdem Yağcı ◽  
Ahmet Bilgin

A phthalonitrile precursor 4-(3-hydroxypropylmercapto)phthalonitrile (3) was synthesized via a base-catalyzed nucleophilic aromatic nitro displacement of 4-nitrophthalonitrile with the 3-mercapto-1-propanol. A novel tetrasubstituted metal-free phthalocyanine (4) ( M = 2 H ) and its metal complexes (5–8) ( M = Zn , Ni , Cu and Co ) bearing 3-hydroxypropylmercapto moieties were prepared by the cyclotetramerization reaction of (3) with the appropriate materials. The visible spectra of the zinc(II) phthalocyanine (5) was recorded with different concentrations and different ions as Ag +, Hg 2+ and Pb 2+ in DMF and also with different solvents as dimethylformamide and pyridine. Fluorescence spectrum of the compound (5) was also studied. Temperature and frequency dependence of AC conductivity for (4–8) was investigated in air and under vacuum and were found to be ~10-8–10-5 S.m-1. Thermal properties of the phthalocyanines were examined by differential scanning calorimetry. All the novel compounds have been characterized by elemental analysis, UV-vis, FT-IR, NMR and MS spectral data and DSC techniques.


2015 ◽  
Vol 44 (42) ◽  
pp. 18447-18458 ◽  
Author(s):  
M. Węcławik ◽  
P. Szklarz ◽  
W. Medycki ◽  
R. Janicki ◽  
A. Piecha-Bisiorek ◽  
...  

Dipyrazolium iodide triiodide, [C3N2H5+]2[I−·I3−], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy.


Author(s):  
Igor Wachter ◽  
Siegfried Hirle ◽  
Karol Balog

Abstract This article deals with the characterization of biomass pellets using Differential Scanning Calorimetry. We used three types of industrially produced and commercially available pellets as samples: wood pellets containing grass, wood pellet containing bark and wood pellets without bark. Each of the samples were examined using the DSC method. Based on the measurements in atmosphere of air and nitrogen temperature, the changes caused by thermal degradation of various kinds of test fuels were observed. Subsequently, limits of exothermic processes, reaction enthalpy changes and the temperature at which exothermic reactions reached peaks were determined.


2015 ◽  
Vol 68 (7) ◽  
pp. 1035 ◽  
Author(s):  
Haiying Zhao ◽  
Xueyou Zhu ◽  
Dong Wang ◽  
Shufeng Chen ◽  
Zhanxi Bian

[3]Ferrocenophane-containing chalcone derivatives with benzene ring (3a–3d) or naphthalene ring (3e–3f) were synthesized and characterized. The potentials for [3]ferrocenophane-containing chalcones cathodically shifted ~70–80 mV compared with those of ferrocene-containing chalcones, indicating easier oxidation by loss of an electron for the former. The thermal behaviours of the prepared compounds were studied by differential scanning calorimetry and polarizing optical microscopy. Compound 3f with terminal alkyl chain of 14 carbon atoms displayed mesophases, whereas other compounds were non-mesomorphic and showed either crystal polymorphic phase transitions or simple melting and freezing process in the heating and cooling cycles.


2011 ◽  
Vol 418-420 ◽  
pp. 643-650 ◽  
Author(s):  
Ru Guo Zhang ◽  
Hong Zhang ◽  
Zheng Zhang ◽  
Hua Zheng ◽  
Ying Feng ◽  
...  

Thermal properties of 5 natural resin and wax samples (shellac, rosin, shellac wax, beeswax, Chinese insect wax) were examined by differential scanning calorimetry (DSC). The DSC melting and crystallization curves of the samples were presented in this paper. Three DSC parameters, To, Tf and ΔT (difference between To and Tf), were selected from each curve. Evaluation results of the parameters showed that they were statistically significant with individual excellent reproducibility. Information was provided by evaluation of changes among thermal absorption or release peaks of the curves in differentiating the five resins and waxes. It was demonstrated in this paper that DSC is rapid, convenient, reliable and accurate to qualitatively identify the resins and waxes mentioned above.


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


Sign in / Sign up

Export Citation Format

Share Document