The stability of thin tellurium and tellurium alloy films for optical data storage: II

1983 ◽  
Vol 108 (3) ◽  
pp. 353-363 ◽  
Author(s):  
Wen-Yaung Lee
1975 ◽  
Vol 30 (11) ◽  
pp. 1425-1432 ◽  
Author(s):  
H.-P. Vollmer

A model for the quantum yield of the coloration caused by UV-light in spiropyran layers is described. This model allows to calculate the sensitivity of layers having different compositions. The mechanism concerning the stability of the coloration is essentially clarified. Calculations of the stability for layers of different compositions are possible by a model describing the mechanism approximately


1988 ◽  
Vol 64 (4) ◽  
pp. 1715-1719 ◽  
Author(s):  
Yoshihito Maeda ◽  
Hisashi Andoh ◽  
Isao Ikuta ◽  
Hiroyuki Minemura

1983 ◽  
Author(s):  
Wen-yaung Lee ◽  
M. Chen ◽  
H. Wieder ◽  
V. Marrello

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Mihai ◽  
F. Sava ◽  
I. D. Simandan ◽  
A. C. Galca ◽  
I. Burducea ◽  
...  

AbstractThe lack of order in amorphous chalcogenides offers them novel properties but also adds increased challenges in the discovery and design of advanced functional materials. The amorphous compositions in the Si–Ge–Te system are of interest for many applications such as optical data storage, optical sensors and Ovonic threshold switches. But an extended exploration of this system is still missing. In this study, magnetron co-sputtering is used for the combinatorial synthesis of thin film libraries, outside the glass formation domain. Compositional, structural and optical properties are investigated and discussed in the framework of topological constraint theory. The materials in the library are classified as stressed-rigid amorphous networks. The bandgap is heavily influenced by the Te content while the near-IR refractive index dependence on Ge concentration shows a minimum, which could be exploited in applications. A transition from a disordered to a more ordered amorphous network at 60 at% Te, is observed. The thermal stability study shows that the formed crystalline phases are dictated by the concentration of Ge and Te. New amorphous compositions in the Si–Ge–Te system were found and their properties explored, thus enabling an informed and rapid material selection and design for applications.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 818
Author(s):  
Xuehua Zhang ◽  
Qian Wang ◽  
Shun Liu ◽  
Wei Zhang ◽  
Fangren Hu ◽  
...  

GeO2/organically modified silane (ormosils) organic-inorganic composite films containing azobenzene were prepared by combining sol-gel technology and spin coating method. Optical waveguide properties including the refractive index and thickness of the composite films were characterized by using a prism coupling instrument. Surface morphology and photochemical properties of the composite films were investigated by atomic force microscope and Fourier transform infrared spectrometer. Results indicate that the composite films have smooth and neat surface, and excellent optical waveguide performance. Photo-isomerization properties of the composite films were studied by using a UV–Vis spectrophotometer. Optical switching performance of the composite films was also studied under the alternating exposure of 365 nm ultraviolet light and 410 nm visible light. Finally, strip waveguides and microlens arrays were built in the composite films through a UV soft imprint technique. Based on the above results, we believe that the prepared composite films are promising candidates for micro-nano optics and photonic applications, which would allow directly integrating the optical data storage and optical switching devices onto a single chip.


Sign in / Sign up

Export Citation Format

Share Document