The maximum principle and boundary α-estimates of the solution of the first boundary value problem for a parabolic equation in a non-cylindrical region

1967 ◽  
Vol 7 (3) ◽  
pp. 104-127
Author(s):  
L.I. Kamynin
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Alexander Yeliseev ◽  
Tatiana Ratnikova ◽  
Daria Shaposhnikova

The aim of this study is to develop a regularization method for boundary value problems for a parabolic equation. A singularly perturbed boundary value problem on the semiaxis is considered in the case of a “simple” rational turning point. To prove the asymptotic convergence of the series, the maximum principle is used.


1989 ◽  
Vol 12 (4) ◽  
pp. 735-739
Author(s):  
Enrique A. Gonzalez-Velasco

We consider a boundary value problem consisting of the one-dimensional parabolic equationgut=(hux)x+q, where g, h and q are functions of x, subject to some general boundary conditions. By developing a maximum principle for the boundary value problem, rather than the equation, we prove the uniqueness of a nonnegative solution that depends continuously on boundary values.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1839 ◽  
Author(s):  
Yanshan Chen ◽  
Zhan Zhou

In this paper, based on critical point theory, we mainly focus on the multiplicity of nontrivial solutions for a nonlinear discrete Dirichlet boundary value problem involving the mean curvature operator. Without imposing the symmetry or oscillating behavior at infinity on the nonlinear term f, we respectively obtain the sufficient conditions for the existence of at least three non-trivial solutions and the existence of at least two non-trivial solutions under different assumptions on f. In addition, by using the maximum principle, we also deduce the existence of at least three positive solutions from our conclusion. As far as we know, our results are supplements to some well-known ones.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Huashui Zhan

Consider an anisotropic parabolic equation with the variable exponents vt=∑i=1n(bi(x,t)vxipi(x)-2vxi)xi+f(v,x,t), where bi(x,t)∈C1(QT¯), pi(x)∈C1(Ω¯), pi(x)>1, bi(x,t)≥0, f(v,x,t)≥0. If {bi(x,t)} is degenerate on Γ2⊂∂Ω, then the second boundary value condition is imposed on the remaining part ∂Ω∖Γ2. The uniqueness of weak solution can be proved without the boundary value condition on Γ2.


Sign in / Sign up

Export Citation Format

Share Document