Use of focused ultrasound for stimulation of nerve structures

Ultrasonics ◽  
1984 ◽  
Vol 22 (3) ◽  
pp. 132-138 ◽  
Author(s):  
L.R. Gavrilov
2018 ◽  
Vol 157 ◽  
pp. 02049
Author(s):  
Antonin Svoboda ◽  
Josef Soukup

This solution describes solution of vibromechanism for stimulation nerve paths and nerve endings injured patients. Medical doctors stimulate nerve paths and nerve endings patients after injury of spine or after another injury where was broken nerve endings. These methods are in primary designed for tetraplegic and paraplegic patients specially for men. For this request was developed device and mechanism for vibrostimulation of nerve paths and nerve endings. In develop of construction has been paying attention to safety of mechanism. Next were taken into account the construction of other devices, especially their shortcomings in the operation on the accumulator. For mains powered vibrators 230 (110) Volt were assessed for safety and noise vibrating mechanism. The sum of all failures was proposed structure described below. The success rate of this vibration method is reported mostly between 60-80%.


2019 ◽  
Vol 45 (2) ◽  
pp. 481-489 ◽  
Author(s):  
Kelsey M. Wasilczuk ◽  
Kelsey C. Bayer ◽  
Jesse P. Somann ◽  
Gabriel O. Albors ◽  
Jennifer Sturgis ◽  
...  

Author(s):  
Christine Park ◽  
Mengyue Chen ◽  
Taewon Kim

Low-intensity transcranial focused ultrasound (LI-tFUS) stimulation is a non-invasive neuromodulation tool that demonstrates high target localization accuracy and depth penetration. It has been shown to modulate activities in the primary motor and somatosensory cortex. Previous studies in animals and humans acknowledged the possibility of indirect stimulation of the peripheral auditory pathway that could confound the somatosensory and motor responses observed with LI-tFUS stimulation. Here, we discuss the implications and interpretations of auditory confounding in the context of neuromodulation.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mersedeh Bahr Hosseini ◽  
Norman Spivak ◽  
Martin Monti ◽  
Alex Korb ◽  
Jeffrey L Saver

Introduction: In multiple animal models of ischemic stroke, cerebellar fastigial nucleus stimulation (FNS) via implanted electrode has been shown to exert strong neuroprotective and collateral enhancement effects. Translational studies of FNS have been precluded due to the invasive nature of direct electrical stimulation. Recently, low-intensity focused ultrasound pulsation (LIFUP) has been used to stimulate deep hemispheric targets. Identifying achievable anatomic trajectories for LIFUP delivery is required for human trials. Method: Sagittal brain MRI T1 from 10 patients were analyzed. Potential pathways from the suboccipital (SO) region (transducer placement site) to the roof of the 4 th ventricle (location of FN) were traced, evaluating paths both via the thinnest portion of the occipital bone (OB) and via the transforaminal window (TFW). Interindividual variations in trajectory distances (cm), thickness of the OB through which the beam passes (cm), and the projected neck flexion degree from neutral position required to achieve a TFW path were measured. Results: An achievable anatomic pathway for stimulation of the FN via LIFUP was identified in 100% of patients (Fig 1). In standard MR positioning, 90% had an available path through thin portions of the OB and 10% had a projected path through TFW. The mean distance from the skin at the SO region to the roof of 4 th ventricle/FN was 7.2 cm (± 0.64cm). The mean OB thickness traversed by the beam was 0.3cm (±0.1). The projected required neck flexion to enable a TFW in all subjects was mean 9.3° (±5°). Conclusions: The distance for the LIFUP beam to travel from skin surface to FN via a suboccipital approach is well within the LIFUP penetration depth and all individuals had an accessible trajectory via the TFW through attainable degrees of head flexion, affording minimal ultrasonic energy dispersion and maximal focality. Ultrasound stimulation of fastigial nucleus is a feasible treatment strategy in human acute ischemic stroke.


2009 ◽  
Vol 15 (11) ◽  
pp. 3605-3619 ◽  
Author(s):  
Laleh Ghasemi-Mobarakeh ◽  
Molamma P. Prabhakaran ◽  
Mohammad Morshed ◽  
Mohammad Hossein Nasr-Esfahani ◽  
Seeram Ramakrishna

Sign in / Sign up

Export Citation Format

Share Document