nanofibrous scaffolds
Recently Published Documents


TOTAL DOCUMENTS

723
(FIVE YEARS 210)

H-INDEX

68
(FIVE YEARS 13)

ACS Omega ◽  
2022 ◽  
Author(s):  
Amna M. I. Rabie ◽  
Ahmed S. M. Ali ◽  
Munir A. Al-Zeer ◽  
Ahmed Barhoum ◽  
Salwa EL-Hallouty ◽  
...  

2022 ◽  
pp. 645-681
Author(s):  
Guadalupe Rivero ◽  
Matthäus D. Popov Pereira da Cunha ◽  
Pablo C. Caracciolo ◽  
Gustavo A. Abraham

Author(s):  
David Sergeevichev ◽  
Victor Balashov ◽  
Victoria Kozyreva ◽  
Sophia Pavlova ◽  
Maria Vasiliyeva ◽  
...  

Different types of engineered cardiac constructs are being developed nowadays by many research groups. However, the immunological properties of such artificial tissues are not yet clearly understood. Previously, we have studied microfiber scaffolds carrying iPSC-derived cardiomyocytes. In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins in T-lymphocytes which are early markers of the immune response. For this purpose electrospun PLA nanofibrous scaffolds were seeded with human iPSCs-CM and cultivated for 2 weeks. After, allogeneic mononuclear cells were co-cultured during 48 hours with 3 groups of samples that were tissue-engineered constructs, pure culture of cardiomyocytes and bare scaffolds followed by analysis of CD28/CTLA-4 expression on T-lymphocytes via flow cytometry. PLA scaffolds and concanavalin A (positive control) stimulation statistically significantly increased CD28 expression on CD4+ cells (up to 61.3% and 66.3%) and on CD8+ cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression didn’t increase during co-cultivation of T-lymphocytes with cardiac engineered constructs and iPSC-CM monolayers. Thus, iPSCs-CM in monolayers and on PLA nanofibrous scaffolds didn’t cause T-cell activation, which allows us to expect that such cardiac constructs are not a cause of rejection after implantation.


2021 ◽  
Vol 11 (24) ◽  
pp. 11937
Author(s):  
Eliconda Antaby ◽  
Kristina Klinkhammer ◽  
Lilia Sabantina

Chitosan is a natural biopolymer that can be suitable for a wide range of applications due to its biocompatibility, rigid structure, and biodegradability. Moreover, it has been proven to have an antibacterial effect against several bacteria strains by incorporating the advantages of the electrospinning technique, with which tailored nanofibrous scaffolds can be produced. A literature search is conducted in this review regarding the antibacterial effectiveness of chitosan-based nanofibers in the filtration, biomedicine, and food protection industries. The results are promising in terms of research into sustainable materials. This review focuses on the electrospinning of chitosan for antibacterial applications and shows current trends in this field. In addition, various aspects such as the parameters affecting the antibacterial properties of chitosan are presented, and the application areas of electrospun chitosan nanofibers in the fields of air and water filtration, food storage, wound treatment, and tissue engineering are discussed in more detail.


2021 ◽  
pp. 004051752110639
Author(s):  
Ye Qi ◽  
Huiyuan Zhai ◽  
Yaning Sun ◽  
Hongxing Xu ◽  
Shaohua Wu ◽  
...  

Electrospun nanofibrous scaffolds have gained extensive attention in the fields of soft tissue engineering and regenerative medicine. In this study, a series of biodegradable nanofibrous meshes were fabricated by electrospinning poly(ε-caprolactone) (PCL) and poly( p-dioxanone) (PPDO) blends with various mass ratios. All the as-developed PCL/PPDO nanofibrous meshes possessed smooth and highly aligned fiber morphology. The mean fiber diameter was 521.5 ± 76.6 nm for PCL meshes and 485.8 ± 88.9 nm for PPDO meshes, and the mean fiber diameter seemed to present a decreasing tendency with the increasing of the PPDO component. For pure PCL meshes, the contact angle was about 117.5 ± 1.6°, the weight loss ratio was roughly 0.2% after 10 weeks of degradation, and the tensile strength was 41.2 ± 2.3 MPa in the longitudinal direction and 4.2 ± 0.1 MPa in the transverse direction. It was found that the surface hydrophilicity and in vitro degradation properties of PCL/PPDO meshes apparently increased, but the mechanical properties of PCL/PPDO meshes obviously decreased when more PPDO component was introduced. The biological tests showed that 4:1 PCL/PPDO nanofibrous meshes and 1:1 PCL/PPDO nanofibrous meshes could obviously promote the adhesion and proliferation of human adipose derived mesenchymal stem cells more than pure PCL and PPDO meshes and 1:4 PCL/PPDO meshes. The results demonstrated that it is feasible to adjust the surface hydrophilicity, degradation profile, and mechanical properties as well as biological properties of as-obtained nanofibrous meshes by blending PCL and PPDO components. This study provides meaningful reference and guidance for the design and development of PCL/PPDO hybrid nanofibrous scaffolds for soft tissue engineering research and application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3191
Author(s):  
Marcus Himmler ◽  
Dirk W. Schubert ◽  
Thomas A. Fuchsluger

The transparency of nanofibrous scaffolds is of highest interest for potential applications like corneal wound dressings in corneal tissue engineering. In this study, we provide a detailed analysis of light transmission through electrospun polycaprolactone (PCL) scaffolds. PCL scaffolds were produced via electrospinning, with fiber diameters in the range from (35 ± 13) nm to (167 ± 35) nm. Light transmission measurements were conducted using UV–vis spectroscopy in the range of visible light and analyzed with respect to the influence of scaffold thickness, fiber diameter, and surrounding medium. Contour plots were compiled for a straightforward access to light transmission values for arbitrary scaffold thicknesses. Depending on the fiber diameter, transmission values between 15% and 75% were observed for scaffold thicknesses of 10 µm. With a decreasing fiber diameter, light transmission could be improved, as well as with matching refractive indices of fiber material and medium. For corneal tissue engineering, scaffolds should be designed as thin as possible and fabricated from polymers with a matching refractive index to that of the human cornea. Concerning fiber diameter, smaller fiber diameters should be favored for maximizing graft transparency. Finally, a novel, semi-empirical formulation of light transmission through nanofibrous scaffolds is presented.


2021 ◽  
Vol 105 (12S1) ◽  
pp. S24-S24
Author(s):  
Purushothaman Kuppan ◽  
Sandra Kelly ◽  
Karen Seeberger ◽  
Chelsea Castro ◽  
Mandy Rosko ◽  
...  

2021 ◽  
Author(s):  
Salim Albukhaty ◽  
Hassan Al-Karagoly ◽  
alireza allafchian ◽  
Seyed Amir Hossein Jalali ◽  
Thair Alkelabi ◽  
...  

Abstract Electrospun polyvinyl alcohol and Tragacanth Gum were used to develop nanofibrous scaffolds containing poorly water-soluble beta-sitosterol. Different Concentration and Ratio of Polymeric composite: (10%) of β-S concentration in (PVA) 8 %, (TG) 0.5%, and 1% respectively were added, prepared and electrospun. The methods have included four parameters (Solution concentration, feeding rate, voltage, and distance of the collector to the tip of the needle) for designing and compared the nanofibers' average diameters. The nanofibers collected were identified via SEM, FTIR, and XRD measurements. A contact angle measurement described the hydrophilicity of the scaffold. MTT test was assessed for obtained nanofibers by using L929 normal fibroblast cells. The %age of mechanical strength, porosity, and deterioration of the scaffolds was well discussed. The average nanofibre ranged from 63 ± 20 nm to 97 ± 46 nm in diameters. The nanofibers loaded with β-S were freely soluble in water and displayed a short release lag time. The dissolution was related to an immediate dissolution, submicron-level recrystallization of β-S with sufficient conditions for nanofibers for L929 cell culture that could be used in biomedical applications. It concluded that electrospinning is a promising technique for poorly water-soluble β-S formulations that could be used in biomedical applications.


2021 ◽  
Vol 191 ◽  
pp. 600-607
Author(s):  
Xinglu Zhou ◽  
Anlin Yin ◽  
Junlu Sheng ◽  
Jiayan Wang ◽  
Huifen Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document