A striking change in symptoms on cucumber mosaic virus-infected tobacco plants induced by a satellite RNA

Virology ◽  
1981 ◽  
Vol 109 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Yoichi Takanami
2017 ◽  
Vol 162 (7) ◽  
pp. 2077-2082 ◽  
Author(s):  
Yanhong Qiu ◽  
Yongjiang Zhang ◽  
Fan Hu ◽  
Shuifang Zhu

2009 ◽  
Vol 90 (12) ◽  
pp. 3015-3021 ◽  
Author(s):  
Anurag Sunpapao ◽  
Takashi Nakai ◽  
Fang Dong ◽  
Tomofumi Mochizuki ◽  
Satoshi T. Ohki

It has been reported previously that a 2b protein-defective mutant of the cucumber mosaic virus (CMV) Pepo strain (Δ2b) induces only mild symptoms in systemically infected tobacco plants. To clarify further the role of the 2b protein as an RNA silencing suppressor in mosaic symptom expression during CMV infection, this study monitored the sequential distribution of Δ2b in the shoot meristem and leaf primordia (LP) of inoculated tobacco. Time-course histochemical observations revealed that Δ2b was distributed in the shoot meristem at 7 days post-inoculation (p.i.), but could not invade shoot apical meristem (SAM) and quickly disappeared from the shoot meristem, whereas wild-type (Pepo) transiently appeared in SAM from 4 to 10 days p.i. In LP, Δ2b signals were detected only at 14 and 21 days p.i., whereas dense Pepo signals were observed in LP from 4 to 18 days p.i. Northern blot analysis showed that small interfering RNA (siRNA) derived from Δ2b RNA accumulated earlier in the shoot meristem and LP than that of Pepo. However, a similar amount of siRNA was detected in both Pepo- and Δ2b-infected plants at late time points. Tissue printing analysis of the inoculated leaves indicated that the areas infected by Pepo increased faster than those infected by Δ2b, whereas accumulation of Δ2b in protoplasts was similar to that of Pepo. These findings suggest that the 2b protein of the CMV Pepo strain determines virulence by facilitating the distribution of CMV in the shoot meristem and LP via prevention of RNA silencing and/or acceleration of cell-to-cell movement.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Sign in / Sign up

Export Citation Format

Share Document