Stress-induced increase of hexose transport as a novel index of cytopathic effects in virus-infected cells: Role of the L protein in the action of vesicular stomatitis virus

Virology ◽  
1988 ◽  
Vol 166 (2) ◽  
pp. 379-386 ◽  
Author(s):  
C.A. Pasternak ◽  
P.A. Whitaker-Dowling ◽  
C.C. Widnell
2008 ◽  
Vol 82 (24) ◽  
pp. 12280-12290 ◽  
Author(s):  
Summer E. Galloway ◽  
Gail W. Wertz

ABSTRACT There are many unique aspects of vesicular stomatitis virus (VSV) transcription. In addition to its unusual mRNA capping and methyltransferase mechanisms, the addition of S-adenosyl homocysteine (SAH), which is the by-product and competitive inhibitor of S-adenosyl methionine (SAM)-mediated methyltransferase reactions, leads to synthesis of poly(A) tails on the 3′ end of VSV mRNAs that are 10- or 20-fold longer than normal. The mechanism by which this occurs is not understood, since it has been shown that productive transcription is not dependent on 5′ cap methylation and full-length VSV mRNAs can be synthesized in the absence of SAM. To investigate this unusual phenotype, we assayed the effects of SAH on transcription using a panel of recombinant viruses that contained mutations in domain VI of the VSV L protein. The L proteins we investigated displayed a range of 5′ cap methyltransferase activities. In the present study, we show that the ability of the VSV L protein to catalyze methyl transfer correlates with its sensitivity to SAH with respect to polyadenylation, thereby indicating an intriguing connection between 5′ and 3′ end mRNA modifications. We also identified an L protein mutant that hyperpolyadenylates mRNA irrespective of the presence or absence of exogenous SAH. Further, the data presented here show that the wild-type L protein hyperpolyadenylates a percentage of VSV mRNAs in infected cells as well as in vitro.


1990 ◽  
Vol 64 (4) ◽  
pp. 1716-1725 ◽  
Author(s):  
D Blondel ◽  
G G Harmison ◽  
M Schubert

2002 ◽  
Vol 76 (16) ◽  
pp. 8011-8018 ◽  
Author(s):  
Himangi R. Jayakar ◽  
Michael A. Whitt

ABSTRACT The matrix (M) protein of vesicular stomatitis virus (VSV) is a multifunctional protein that is responsible for condensation of the ribonucleocapsid core during virus assembly and also plays a critical role in virus budding. The M protein is also responsible for most of the cytopathic effects (CPE) observed in infected cells. VSV CPE include inhibition of host gene expression, disablement of nucleocytoplasmic transport, and disruption of the host cytoskeleton, which results in rounding of infected cells. In this report, we show that the VSV M gene codes for two additional polypeptides, which we have named M2 and M3. These proteins are synthesized from downstream methionines in the same open reading frame as the M protein (which we refer to here as M1) and lack the first 32 (M2) or 50 (M3) amino acids of M1. Infection of cells with a recombinant virus that does not express M2 and M3 (M33,51A) resulted in a delay in cell rounding, but virus yield was not affected. Transient expression of M2 and M3 alone caused cell rounding similar to that with the full-length M1 protein, suggesting that the cell-rounding function of the M protein does not require the N-terminal 50 amino acids. To determine if M2 and M3 were sufficient for VSV-mediated CPE, both M2 and M3 were expressed from a separate cistron in a VSV mutant background that readily establishes persistent infections and that normally lacks CPE. Infection of cells with the recombinant virus that expressed M2 and M3 resulted in cell rounding indistinguishable from that with the wild-type recombinant virus. These results suggest that M2 and M3 are important for cell rounding and may play an important role in viral cytopathogenesis. To our knowledge, this is first report of the multiple coding capacities of a rhabdovirus matrix gene.


2008 ◽  
Vol 83 (4) ◽  
pp. 1930-1940 ◽  
Author(s):  
Jianrong Li ◽  
Amal Rahmeh ◽  
Vesna Brusic ◽  
Sean P. J. Whelan

ABSTRACT The multifunctional large (L) polymerase protein of vesicular stomatitis virus (VSV) contains enzymatic activities essential for RNA synthesis, including mRNA cap addition and polyadenylation. We previously mapped amino acid residues G1154, T1157, H1227, and R1228, present within conserved region V (CRV) of L, as essential for mRNA cap addition. Here we show that alanine substitutions to these residues also affect 3′-end formation. Specifically, the cap-defective polymerases produced truncated transcripts that contained A-rich sequences at their 3′ termini and predominantly terminated within the first 500 nucleotides (nt) of the N gene. To examine how the cap-defective polymerases respond to an authentic VSV termination and reinitiation signal present at each gene junction, we reconstituted RNA synthesis using templates that contained genes inserted (I) at the leader-N gene junction. The I genes ranged in size from 382 to 1,098 nt and were typically transcribed into full-length uncapped transcripts. In addition to lacking a cap structure, the full-length I transcripts synthesized by the cap-defective polymerases lacked an authentic polyadenylate tail and instead contained 0 to 24 A residues. Moreover, the cap-defective polymerases were also unable to copy efficiently the downstream gene. Thus, single amino acid substitutions in CRV of L protein that inhibit cap addition also inhibit polyadenylation and sequential transcription of the genome. In contrast, an amino acid substitution, K1651A, in CRVI of L protein that completely inhibits cap methylation results in the hyperpolyadenylation of mRNA. This work reveals that inhibiting cap addition and cap methylation have opposing effects on polyadenylation during VSV mRNA synthesis and provides evidence in support of a link between correct 5′ cap formation and 3′ polyadenylation.


Sign in / Sign up

Export Citation Format

Share Document