Analysis of putative active site residues of the poliovirus 3C protease

Virology ◽  
1991 ◽  
Vol 181 (2) ◽  
pp. 609-619 ◽  
Author(s):  
Katherine M. Kean ◽  
Natalya L. Teterina ◽  
Daniel Marc ◽  
Marc Girard
1996 ◽  
Vol 260 (5) ◽  
pp. 731-742 ◽  
Author(s):  
Carole Garinot-Schneider ◽  
Ansgar J. Pommer ◽  
Geoffrey R. Moore ◽  
Colin Kleanthous ◽  
Richard James

Science ◽  
2020 ◽  
Vol 369 (6499) ◽  
pp. 59-64 ◽  
Author(s):  
Narsis Attar ◽  
Oscar A. Campos ◽  
Maria Vogelauer ◽  
Chen Cheng ◽  
Yong Xue ◽  
...  

Eukaryotic histone H3-H4 tetramers contain a putative copper (Cu2+) binding site at the H3-H3′ dimerization interface with unknown function. The coincident emergence of eukaryotes with global oxygenation, which challenged cellular copper utilization, raised the possibility that histones may function in cellular copper homeostasis. We report that the recombinant Xenopus laevis H3-H4 tetramer is an oxidoreductase enzyme that binds Cu2+ and catalyzes its reduction to Cu1+ in vitro. Loss- and gain-of-function mutations of the putative active site residues correspondingly altered copper binding and the enzymatic activity, as well as intracellular Cu1+ abundance and copper-dependent mitochondrial respiration and Sod1 function in the yeast Saccharomyces cerevisiae. The histone H3-H4 tetramer, therefore, has a role other than chromatin compaction or epigenetic regulation and generates biousable Cu1+ ions in eukaryotes.


2008 ◽  
Vol 49 (8) ◽  
pp. 1770-1781 ◽  
Author(s):  
Akash Das ◽  
Matthew A. Davis ◽  
Lawrence L. Rudel

2002 ◽  
Vol 76 (12) ◽  
pp. 5949-5958 ◽  
Author(s):  
Yuichi Someya ◽  
Naokazu Takeda ◽  
Tatsuo Miyamura

ABSTRACT The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.


2007 ◽  
Vol 464 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Draženka Svedružić ◽  
Yong Liu ◽  
Laurie A. Reinhardt ◽  
Ewa Wroclawska ◽  
W. Wallace Cleland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document