coxsackievirus b3
Recently Published Documents


TOTAL DOCUMENTS

901
(FIVE YEARS 96)

H-INDEX

64
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Adeeba H Dhalech ◽  
Caleb M Corn ◽  
Vrushali Mangale ◽  
Christopher M Robinson

Enteroviruses initiate infection in the gastrointestinal tract, and sex is often a biological variable that impacts infection. The role of sex hormones on enterovirus pathogenesis, however, is unclear. Previous data indicate that sex hormones can influence intestinal replication of Coxsackievirus B3 (CVB3), an enterovirus in the Picornavirus family. To determine if testosterone promotes CVB3 infection, male mice were castrated and provided placebo or testosterone-filled capsules. We found that testosterone-treated mice shed significantly more CVB3 in the feces and succumbed to CVB3-induced disease at a higher rate than castrated mice given a placebo. Treatment of male mice with an androgen receptor antagonist, flutamide, protected male mice from CVB3-induced lethality, further confirming the role of testosterone in viral pathogenesis. We also observed higher viral loads in peripheral tissues of testosterone-treated mice and an increase in the cytokine and chemokine response. Finally, we found that testosterone treatment in female mice increased fecal CVB3 shedding but had no impact on viral lethality. Overall, these data indicate that testosterone and androgen receptor signaling can promote CVB3 replication in the intestine and enhance CVB3 lethality in a sex-dependent manner.


2021 ◽  
Vol 2 (4) ◽  
pp. 100940
Author(s):  
Cameron D. Griffiths ◽  
Andrew J. Sweatt ◽  
Kevin A. Janes

2021 ◽  
Author(s):  
Qian Yang ◽  
Dongmei Yan ◽  
Yang Song ◽  
Shuangli Zhu ◽  
Yun He ◽  
...  

Abstract Background Coxsackievirus B3 (CVB3) has emerged as an active pathogen in myocarditis, aseptic meningitis, hand, foot, and mouth disease (HFMD), and pancreatitis, and is a heavy burden on public health. However, CVB3 has not been systematically analyzed with regard to whole-genome diversity and recombination. Therefore, this study was undertaken to systematically examine the genetic characteristics of CVB3 based on its whole genome. Methods We combined CVB3 isolates from our national HFMD surveillance and global sequences retrieved from GenBank. Phylogenetic analysis was performed to examine the whole genome variety and recombination forms of CVB3 in China and worldwide. Results Phylogenetic analysis showed that CVB3 strains isolated worldwide could be classified into groups A–E based on the sequence of the entire VP1 region. The predominant CVB3 strains in China belonged to group D, whereas group E CVB3 might be circulated globally compared to other groups. The average nucleotide substitution rate in the P1 region of CVB3 was 4.82 × 10−3 substitutions/site/year. Myocarditis was more common with group A. Groups C and D presented more cases of acute flaccid paralysis, and group D may be more likely to cause HFMD. Multiple recombination events were detected among CVB3 variants, and there were twenty-three recombinant lineages of CVB3 circulating worldwide. Conclusions Overall, this study provides full-length genomic sequences of CVB3 isolates with a wide geographic distribution over a long-term time scale in China, which will be helpful for understanding the evolution of this pathogen. Simultaneously, continuous surveillance of CVB3 is indispensable to determine its genetic diversity in China as well as worldwide.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yimin Xue ◽  
Mingguang Chen ◽  
Qian Chen ◽  
Tingfeng Huang ◽  
Qiaolian Fan ◽  
...  

Abstract Background Interleukin (IL)-38, a novel member of the IL-1 family, has been reported to be involved in several diseases associated with viral infection. However, the expression and functional role of IL-38 in acute viral myocarditis (AVMC) have not been investigated. Methods Male BALB/c mice were treated with intraperitoneal (i.p.) injection of coxsackievirus B3 (CVB3) for establishing AVMC models. On day 7 post-injection, the expression of IL-38 and IL-36R (IL-36 receptor) were measured. Mice were then treated with i.p. injection of mouse Anti-IL-38 Antibodies (Abs) for neutralization of IL-38. The survival, bodyweight loss, cardiac function, and myocarditis severity of mice were recorded. The percentages of splenic Th1 and Th17 cells, the expression levels of Th1/Th17-related master transcription factors (T-bet and RORγt) and cytokines were determined by flow cytometry, RT-qPCR, and ELISA, respectively. Cardiac viral replication was further detected. Results The mRNA and protein expression levels of IL-38 in myocardium and serum, as well as cardiac IL-36R mRNA levels were significantly elevated in mice with AVMC. Increased IL-38 levels were negatively correlated with the severity of AVMC. Neutralization of IL-38 exacerbated CVB3-induced AVMC, as verified by the lower survival rate, impaired cardiac function, continuous bodyweight loss, and higher values of HW/BW and cardiac pathological scores. In addition, neutralization of IL-38 suppressed Th1 cells differentiation while promoted Th17 cells differentiation, accompanied by decreased T-bet mRNA expression and increased RORγt expression. Down-regulation of IFN-γ and up-regulation of IL-17, TNF-α, and IL-6 mRNA and protein expression levels in myocardium and serum were also observed in the IL-38 neutralization group. Furthermore, neutralization of IL-38 markedly promoted cardiac viral replication. Conclusions Neutralization of IL-38 exacerbates CVB3-induced AVMC in mice, which may be attributable to the imbalance of Th1/Th17 cells and increased CVB3 replication. Thus, IL-38 can be considered as a potential therapeutic target for AVMC.


2021 ◽  
Vol 17 (10) ◽  
pp. e1010018
Author(s):  
Soo Jin Park ◽  
Uram Jin ◽  
Sang Myun Park

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. PD is pathologically characterized by the death of midbrain dopaminergic neurons and the accumulation of intracellular protein inclusions called Lewy bodies or Lewy neurites. The major component of Lewy bodies is α-synuclein (α-syn). Prion-like propagation of α-syn has emerged as a novel mechanism in the progression of PD. This mechanism has been investigated to reveal factors that initiate Lewy pathology with the aim of preventing further progression of PD. Here, we demonstrate that coxsackievirus B3 (CVB3) infection can induce α-syn-associated inclusion body formation in neurons which might act as a trigger for PD. The inclusion bodies contained clustered organelles, including damaged mitochondria with α-syn fibrils. α-Syn overexpression accelerated inclusion body formation and induced more concentric inclusion bodies. In CVB3-infected mice brains, α-syn aggregates were observed in the cell body of midbrain neurons. Additionally, α-syn overexpression favored CVB3 replication and related cytotoxicity. α-Syn transgenic mice had a low survival rate, enhanced CVB3 replication, and exhibited neuronal cell death, including that of dopaminergic neurons in the substantia nigra. These results may be attributed to distinct autophagy-related pathways engaged by CVB3 and α-syn. This study elucidated the mechanism of Lewy body formation and the pathogenesis of PD associated with CVB3 infection.


2021 ◽  
Vol 95 (21) ◽  
Author(s):  
Biju George ◽  
Pratik Dave ◽  
Priya Rani ◽  
Padmanava Behera ◽  
Saumitra Das

A positive-strand RNA virus must balance the availability of its genomic template for different viral processes at different stages of its life cycle. A few host proteins are shown to be important to help the virus in switching the usage of a template between these processes.


2021 ◽  
Author(s):  
Tingjun Liu ◽  
Jing Tong ◽  
Chen Shao ◽  
Junyan Qu ◽  
Hua Wang ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1918
Author(s):  
Ahmet Hazini ◽  
Babette Dieringer ◽  
Karin Klingel ◽  
Markian Pryshliak ◽  
Anja Geisler ◽  
...  

The coxsackievirus B3 strain PD-0 has been proposed as a new oncolytic virus for the treatment of colorectal carcinoma. Here, we generated a cDNA clone of PD-0 and analyzed the virus PD-H, newly generated from this cDNA, in xenografted and syngenic models of colorectal cancer. Replication and cytotoxic assays revealed that PD-H replicated and lysed colorectal carcinoma cell lines in vitro as well as PD-0. Intratumoral injection of PD-H into subcutaneous DLD-1 tumors in nude mice resulted in strong inhibition of tumor growth and significantly prolonged the survival of the animals, but virus-induced systemic infection was observed in one of the six animals. In a syngenic mouse model of subcutaneously growing Colon-26 tumors, intratumoral administration of PD-H led to a significant reduction of tumor growth, the prolongation of animal survival, the prevention of tumor-induced cachexia, and the elevation of CD3+ and dendritic cells in the tumor microenvironment. No virus-induced side effects were observed. After intraperitoneal application, PD-H induced weak pancreatitis and myocarditis in immunocompetent mice. By equipping the virus with target sites of miR-375, which is specifically expressed in the pancreas, organ infections were prevented. Moreover, employment of this virus in a syngenic mouse model of CT-26 peritoneal carcinomatosis resulted in a significant reduction in tumor growth and an increase in animal survival. The results demonstrate that the immune status of the host, the route of virus application, and the engineering of the virus with target sites of suitable microRNAs are crucial for the use of PD-H as an oncolytic virus.


Sign in / Sign up

Export Citation Format

Share Document