Production and characterization of monoclonal antibodies to porcine group C rotaviruses cross-reactive with group A rotaviruses

Virology ◽  
1992 ◽  
Vol 191 (1) ◽  
pp. 272-281 ◽  
Author(s):  
Hiroshi Tsunemitsu ◽  
Clem K. Ojeh ◽  
Baoming Jiang ◽  
Ron A. Simkins ◽  
Peggy A. Weilnau ◽  
...  
1994 ◽  
Vol 6 (2) ◽  
pp. 175-181 ◽  
Author(s):  
A. Lucchelli ◽  
S. Y. Kang ◽  
M. K. Jayasekera ◽  
A. V. Parwani ◽  
D. H. Zeman ◽  
...  

Group A bovine rotaviruses (BRV) have been identified worldwide as a major cause of diarrhea in the young of many species, including humans. Group A rotaviruses are classified into serotypes on the basis of the outer capsid proteins, VP7 (G types) and VP4 (P types). To date, there are 14 G types of group A rotaviruses, with G1, G6, G8, and G10 described for BRV isolates. In this study, G6- and G lo-specific monoclonal antibodies (MAbs) were used in an enzyme-linked immunosorbent assay (ELISA) for the G typing of BRV-positive stool samples from diarrheic beef and dairy calves from South Dakota, Ohio, Michigan, Nebraska, and Washington, USA, and Ontario, Canada. ELISA plates were coated using a broadly reactive VP7 MAb (Common 60) or with G6- or G10-specific MAbs. BRV-positive fecal samples were diluted and added to duplicate wells, followed by the addition of polyclonal guinea pig anti-group A rotavirus serum as the secondary antibody. Several reference G6 and G10 BRV strains as well as other G types previously reported in cattle (G1, G2, G3, G8) and BRV-negative samples were included as G type specificity and negative controls. From a total of 308 field samples analyzed, 79% (244/308) tested positive by the broadly reactive VP7 MAb; of these, 54% (131/244) were G6 positive, 14% (35/244) were G10 positive, 4% (9/244) were both G6 and G10 positive, and 28% (69/244) were G6 and G10 negative. The negative samples may represent additional or undefined serotypes. The 89 samples from South Dakota were further subdivided into samples from beef ( n = 43) or dairy ( n = 46) herds. G6 was more prevalent in beef herd samples (67%) than in dairy herd samples (47.5%). In addition, dairy herds had higher percentages of G10-positive samples (17.5%) G6-G10 double positives (10%), and untypable samples (25%) than did beef herds, in which the prevalence of G10 positive samples was 5.5%, G6-G10 double positives was 5.5%, and untypable samples was 22%. Application of the serotype ELISA for the analysis of additional BRV samples will provide further epidemiologic data on the distribution of BRV serotypes in beef or dairy cattle, an important consideration for the development of improved BRV vaccines.


2021 ◽  
Vol 102 (4) ◽  
Author(s):  
Takeshi Tsugawa ◽  
Yoshiki Fujii ◽  
Yusuke Akane ◽  
Saho Honjo ◽  
Kenji Kondo ◽  
...  

Group A rotaviruses (RVAs) infect a wide variety of mammalian and avian species. Animals act as a potential reservoir to RVA human infections by direct virion transmission or by contributing genes to reassortants. Here, we report the molecular characterization of a rare human RVA strain Ni17-46 with a genotype G15P[14], isolated in Japan in 2017 during rotavirus surveillance in a paediatric outpatient clinic. The genome constellation of this strain was G15-P[14]-I2-R2-C2-M2-A13-N2-T9-E2-H3. This is the first report of an RVA with G15 genotype in humans, and sequencing and phylogenetic analysis results suggest that human infection with this strain has zoonotic origin from the bovine species. Given the fact that this strain was isolated from a patient with gastroenteritis and dehydration symptoms, we must take into account the virulence of this strain in humans.


2011 ◽  
Vol 140 (2) ◽  
pp. 247-259 ◽  
Author(s):  
O. CASHMAN ◽  
P. J. COLLINS ◽  
G. LENNON ◽  
B. CRYAN ◽  
V. MARTELLA ◽  
...  

SUMMARYCommunity and hospital-acquired cases of human rotavirus are responsible for millions of gastroenteritis cases in children worldwide, chiefly in developing countries, and vaccines are now available. During surveillance activity for human rotavirus infections in Ireland, between 2006 and 2009, a total of 420 rotavirus strains were collected and analysed. Upon either PCR genotyping and sequence analysis, a variety of VP7 (G1–G4 and G9) and VP4 (P[4], P[6], P[8] and P[9]) genotypes were detected. Strains G1P[8] were found to be predominant throughout the period 2006–2008, with slight fluctuations seen in the very limited samples available in 2008–2009. Upon either PCR genotyping and sequence analysis of selected strains, the G1, G3 and G9 viruses were found to contain E1 (Wa-like) NSP4 and I1 VP6 genotypes, while the analysed G2 strains possessed E2 NSP4 and I2 VP6 genotypes, a genetic make-up which is highly conserved in the major human rotavirus genogroups Wa- and Kun-like, respectively. Upon sequence analysis of the most common VP4 genotype, P[8], at least two distinct lineages were identified, both unrelated to P[8] Irish rotaviruses circulating in previous years, and more closely related to recent European humans rotaviruses. Moreover, sequence analysis of the VP7 of G1 rotaviruses revealed the onset of a G1 variant, previously unseen in the Irish population.


2008 ◽  
Vol 82 (6) ◽  
pp. 2752-2764 ◽  
Author(s):  
Sarah M. McDonald ◽  
John T. Patton

ABSTRACT Group A rotaviruses are classified into serotypes, based on the reactivity pattern of neutralizing antibodies to VP4 and VP7, as well as into subgroups (SGs), based on non-neutralizing antibodies directed against VP6. The inner capsid protein (VP2) has also been described as a SG antigen; however, little is known regarding the molecular determinants of VP2 SG specificity. In this study, we characterize VP2 SGs by correlating genetic markers with the immunoreactivity of the SG-specific monoclonal antibody (YO-60). Our results show that VP2 proteins similar in sequence to that of the prototypic human strain Wa are recognized by YO-60, classifying them as VP2 SG-II. In contrast, proteins not bound by YO-60 are similar to those of human strains DS-1 or AU-1 and represent VP2 SG-I. Using a mutagenesis approach, we identified residues that determine recognition by either YO-60 or the group A-specific VP2 monoclonal antibody (6E8). We found that YO-60 binds to a conformationally dependent epitope that includes Wa VP2 residue M328. The epitope for 6E8 is also contingent upon VP2 conformation and resides within a single region of the protein (Wa VP2 residues A440 to T530). Using a high-resolution structure of bovine rotavirus double-layered particles, we predicted these epitopes to be spatially distinct from each other and located on opposite surfaces of VP2. This study reveals the extent of genetic variation among group A rotavirus VP2 proteins and illuminates the molecular basis for a previously described SG specificity associated with the rotavirus inner capsid protein.


1999 ◽  
Vol 128 (4) ◽  
pp. 1032-1034
Author(s):  
E. A. Bazanova ◽  
N. A. Borodiyuk ◽  
O. S. Grigor'eva ◽  
E. N. Semenova ◽  
N. Yu. Brineva ◽  
...  

Vaccine ◽  
2019 ◽  
Vol 37 (45) ◽  
pp. 6842-6856 ◽  
Author(s):  
Mukti Kant Nayak ◽  
Anindita Banerjee ◽  
Rakesh Sarkar ◽  
Suvrotoa Mitra ◽  
Kunal Dutta ◽  
...  

1989 ◽  
Vol 102 (3) ◽  
pp. 523-530 ◽  
Author(s):  
S. K. Ghosh ◽  
T. N. Naik

SUMMARYMonoclonal antibodies specific for rotavirus subgroup 1 (SG1) and subgroup 2 (SG2) were used to analyse by enzyme immunoassay (EIA) the subgroups of human rotavirus isolates obtained from three different parts of India during the period September 1985 to July 1987. We identified one isolate which failed to react with either SG1 or SG2 specific monoclonal antibodies, although it reacted well with a monoclonal antibody specific for group A rotaviruses. This finding suggests that it belongs to a new rotavirus subgroup. Further, another isolate was found to belong to SG1 although it had a ‘long’ electropherotype.


Sign in / Sign up

Export Citation Format

Share Document