Finite element simulation of dynamic strain-localization: A multi-scale problem

1995 ◽  
Vol 120 (3-4) ◽  
pp. 315-338 ◽  
Author(s):  
Benjamin Loret ◽  
Jean H. Prevost ◽  
Arghya Deb
2018 ◽  
Vol 19 (3) ◽  
pp. 301 ◽  
Author(s):  
Luc Chevalier ◽  
Heba Makhlouf ◽  
Benoît Jacquet-Faucillon ◽  
Eric Launay

Wood furniture is often composed of simple parts that may be modeled as beams or plates. These particularities allow using simplified approaches that reduces the number of degrees of freedom (dof for short) in a finite element simulation of the furniture's behavior. Generally, connections are not taken into account in such simulations but these connections are critical in the failure process of the furniture and it worth studying it precisely. Using a multi-scale approach, this paper introduces a numerical procedure to identify the connection contribution in the furniture's stiffness. Comparing 3D finite element calculations with a Timoshenko's beam calculation on a corner of two wooden parts, we identify the specific behavior of the connection elements (pins, nut, screw… and local 3D effects) to introduce it as a punctual 0D element in the beam code. Two validations of the approach are presented here: (i) a numerical validation by comparing the result of the beam code with a complete 3D finite element simulation on a representative plane structure of wooden furniture; (ii) an experimental validation by managing a global bending test and measuring the displacement field using digital image correlation (DIC for short).


2013 ◽  
Vol 244 ◽  
pp. 298-311 ◽  
Author(s):  
Maria-Grazia Ascenzi ◽  
Neal P. Kawas ◽  
Andre Lutz ◽  
Dieter Kardas ◽  
Udo Nackenhorst ◽  
...  

2005 ◽  
Vol 495-497 ◽  
pp. 1103-1110 ◽  
Author(s):  
Xiaohua Hu ◽  
Monique Gaspérini ◽  
Paul van Houtte

Although the Taylor-type models gives reasonable texture prediction of the monotonic cold deformation of annealed aluminum alloys both qualitatively and quantitatively, results are less satisfactory for the simple shear test when the alloy is heavily pre-deformed by cold rolling. The reason for this less good prediction originates from strain localization. A virtual stress-strain curve is proposed in which the texture aspects are dealt with by the FC Taylor simulation and the microstructure aspects by a model for the development of intragrain dislocations structure. This virtual yield law is used in a finite element simulation. A strain localization behavior is observed during the finite element simulation similar to that observed during experimental simple shear test. The strain profile of a specific global strain is discretized into a series of strain and the volume fractions of the regions deformed to these strain levels, using the statistical method of histogram. A secondary FC-Taylor simulation is performed, in order to generate the deformation textures, corresponding to this series of deformation strains. The global texture is generated by merging these textures with consideration of these volume fractions. Using this procedure of multi-level modeling, quite satisfactory texture prediction is observed, compared with the measured texture at this strain.


2019 ◽  
Vol 22 (3) ◽  
pp. 188-194
Author(s):  
V. A. Polyanskiy ◽  
A. K. Belyaev ◽  
A. I. Grishchenko ◽  
A. M. Lobachev ◽  
V. S. Modestov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document