Finite element simulation and analytical modeling of 3D multi scale diffusion in nanocomposites with permeable stacks

Author(s):  
A Greco ◽  
A Maffezzoli
2018 ◽  
Vol 19 (3) ◽  
pp. 301 ◽  
Author(s):  
Luc Chevalier ◽  
Heba Makhlouf ◽  
Benoît Jacquet-Faucillon ◽  
Eric Launay

Wood furniture is often composed of simple parts that may be modeled as beams or plates. These particularities allow using simplified approaches that reduces the number of degrees of freedom (dof for short) in a finite element simulation of the furniture's behavior. Generally, connections are not taken into account in such simulations but these connections are critical in the failure process of the furniture and it worth studying it precisely. Using a multi-scale approach, this paper introduces a numerical procedure to identify the connection contribution in the furniture's stiffness. Comparing 3D finite element calculations with a Timoshenko's beam calculation on a corner of two wooden parts, we identify the specific behavior of the connection elements (pins, nut, screw… and local 3D effects) to introduce it as a punctual 0D element in the beam code. Two validations of the approach are presented here: (i) a numerical validation by comparing the result of the beam code with a complete 3D finite element simulation on a representative plane structure of wooden furniture; (ii) an experimental validation by managing a global bending test and measuring the displacement field using digital image correlation (DIC for short).


2013 ◽  
Vol 244 ◽  
pp. 298-311 ◽  
Author(s):  
Maria-Grazia Ascenzi ◽  
Neal P. Kawas ◽  
Andre Lutz ◽  
Dieter Kardas ◽  
Udo Nackenhorst ◽  
...  

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 131 ◽  
Author(s):  
Qianyou Wang ◽  
Yaohua Li ◽  
Wei Yang ◽  
Zhenxue Jiang ◽  
Yan Song ◽  
...  

Multi-scale bedding fractures, i.e., km-scale regional bedding fractures and cm-scale lamina-induced fractures, have been the focus of unconventional oil and gas exploration and play an important role in resource exploration and drilling practice for tight oil and gas. It is challenging to conduct numerical simulations of bedding fractures due to the strong heterogeneity without a proper mechanical criterion to predict failure behaviors. This research modified the Tien–Kuo (T–K) criterion by using four critical parameters (i.e., the maximum principal stress (σ1), minimum principal stress (σ3), lamina angle (θ), and lamina friction coefficient (μlamina)). The modified criterion was compared to other bedding failure criteria to make a rational finite element simulation constrained by the four variables. This work conducted triaxial compression tests of 18 column samples with different lamina angles to verify the modified rock failure criterion, which contributes to the simulation work on the multi-scale bedding fractures in the statics module of the ANSYS workbench. The cm-scale laminated rock samples and the km-scale Yanchang Formation in the Ordos Basin were included in the multi-scale geo-models. The simulated results indicate that stress is prone to concentrate on lamina when the lamina angle is in an effective range. The low-angle lamina always induces fractures in an open state with bigger failure apertures, while the medium-angle lamina tends to induce fractures in a shear sliding trend. In addition, the regional bedding fractures of the Yanchang Formation in the Himalayan tectonic period tend to propagate under the conditions of lower maximum principal stress, higher minimum principal stress, and larger stratigraphic dip.


2019 ◽  
Vol 9 (7) ◽  
pp. 1445 ◽  
Author(s):  
Feng Li ◽  
Jinqiang Ning ◽  
Steven Liang

The planar induction heating possesses more difficulties in industry application compared with traditional spiral induction coils in mostly heat treatment processes. Numerical approaches are adopted in the power distribution and temperature prediction during the induction heating process, which has a relatively low computational efficiency. In this work, an analytical calculation model of the planar induction heating with magnetic flux concentrator is investigated based on the uniform moving heating source. In this model, the power density in the surface of the workpiece induced by coils is calculated and applied into the analytical model of the temperature calculation using a uniform moving heat source. Planar induction heating tests are conducted under various induction coil parameters and the corresponding temperature evolution is obtained by the infrared imaging device NEC R300W2-NNU and the thermocouples. The final surface temperature prediction is compared to the finite element simulation results and experimental data. The analytical results show a good match with the finite element simulation and the experimental results, and the errors are in reasonable range and acceptable. The analytical model can compute the temperature distribution directly and the computational time is much less than the finite element method. Therefore, the temperature prediction method in this work has the advantage of less experimental and computational complexity, which can extend the analytical modeling methodology in induction heating to a broader application.


Sign in / Sign up

Export Citation Format

Share Document