Modelling of hydrodynamics, heat and mass transfer processes on the basis of unsteady Navier-Stokes equations. Applications to the material sciences at earth and under microgravity

1994 ◽  
Vol 115 (1-2) ◽  
pp. 79-92 ◽  
Author(s):  
V.I Poleshaev
2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1923-1933
Author(s):  
Meriem Ouzaouit ◽  
Btissam Abourida ◽  
Lahoucine Belarche ◽  
Hicham Doghmi ◽  
Mohamed Sannad

This study is a contribution to the numerical study of the thermosolutal convection in a 3-D porous cavity filled with a binary fluid submitted to cross gradients of temperature and concentration. The Navier-Stokes equations, mass and energy governing the physical problem are discretized by the finite volume method. The equations of conservation of momentum coupled with the continuity equation are solved using the SIMPLEC algorithm, then the obtained system is solved using the implicit alternating directions method. The numerical simulations, presented here, correspond to a wide range of thermal Rayleigh number (103< Ra < 106) and buoyancy ratio (1 < N < 12). The Lewis and Prandtl numbers were fixed respectively at 5 and 0.71 and the sections dimension ? = D / H = 0.4. The temperature distribution, the flow pattern and the average heat and mass transfer are examined. The obtained results show significant changes in terms of heat and mass transfer, by proper choice of the governing parameters.


2018 ◽  
Vol 43 (45) ◽  
pp. 20474-20487 ◽  
Author(s):  
Marcin Pajak ◽  
Marcin Mozdzierz ◽  
Maciej Chalusiak ◽  
Shinji Kimijima ◽  
Janusz S. Szmyd ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document