Three dimensional solid-shell transition finite elements for heat conduction

1987 ◽  
Vol 26 (6) ◽  
pp. 941-950 ◽  
Author(s):  
Karan S. Surana ◽  
Robert K. Phillips
1987 ◽  
Vol 12 (4) ◽  
pp. 239-250 ◽  
Author(s):  
R. A. Tatara

A general thermal model to calculate the thermal resistance of a power module having rectangular die and layers has been constructed. The model incorporates a finite element computer program to solve for three-dimensional heat conduction. Effects of voids in the solder regions are included. A sample case is analyzed, and a comparison is made to a recent study.


1987 ◽  
Vol 25 (5) ◽  
pp. 775-785 ◽  
Author(s):  
Karan S. Surana ◽  
Robert K. Phillips

2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


Author(s):  
Cengiz Yeker ◽  
Ibrahim Zeid

Abstract A fully automatic three-dimensional mesh generation method is developed by modifying the well-known ray casting technique. The method is capable of meshing objects modeled using the CSG representation scheme. The input to the method consists of solid geometry information, and mesh attributes such as element size. The method starts by casting rays in 3D space to classify the empty and full parts of the solid. This information is then used to create a cell structure that closely models the solid object. The next step is to further process the cell structure to make it more succinct, so that the cells close to the boundary of the solid object can model the topology with enough fidelity. Moreover, neighborhood relations between cells in the structure are developed and implemented. These relations help produce better conforming meshes. Each cell in the cell structure is identified with respect to a set of pre-defined types of cells. After the identification process, a normalization process is developed and applied to the cell structure in order to ensure that the finite elements generated from each cell conform to each other and to other elements produced from neighboring cells. The last step is to mesh each cell in the structure with valid finite elements.


Sign in / Sign up

Export Citation Format

Share Document