Determination of lead in blood — An interlaboratory study

1988 ◽  
Vol 71 (1) ◽  
pp. 125-130 ◽  
Author(s):  
K.S. Subramanian
2009 ◽  
Vol 74 (4) ◽  
pp. 599-610 ◽  
Author(s):  
Mohammad Bagher Gholivand ◽  
Alireza Pourhossein ◽  
Mohsen Shahlaei

A sensitive and selective procedure is presented for the voltammetric determination of lead. The procedure involves an adsorptive accumulation of lead L-3-(3,4-dihydroxyphenyl)alanine (LDOPA) on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of reduction current of an adsorbed complex at –0.15 V (vs Ag|AgCl). Optimum conditions for lead analysis include pH 8.5, 80 μM LDOPA and accumulation potential –0.15 V (vs Ag|AgCl). The peak currents are proportional to the lead concentration 1–300 nmol l–1 with a detection limit of 0.6 nmol l–1 and accumulation time 60 s. The method was used for the determination of lead in blood, dry tea and also in waters.


2006 ◽  
Vol 89 (4) ◽  
pp. 1012-1020 ◽  
Author(s):  
Joerg Stroka ◽  
Michelle Derbyshire ◽  
Carsten Mischke ◽  
Massimo Ambrosio ◽  
Katy Kroeger ◽  
...  

Abstract An interlaboratory study was conducted for the determination of deoxynivalenol in baby food and animal feed by high-performance liquid chromatography with UV detection. The study included 14 participants representing a cross section of industry, official food control, and research facilities. Mean recoveries reported ranged from 89% (at 120 g/kg) to 85% (at 240 g/kg) for baby food and from 100% (at 200 g/kg) to 93% (at 400 g/kg) for animal feed. On the basis of the results for spiked samples (blind duplicates at 2 levels), as well as those for naturally contaminated samples (blind duplicates at 3 levels), the relative standard deviation for repeatability (RSDr) in analyses of baby food ranged from 6.4 to 14.0% and in analyses of animal feed, from 6.1 to 16.5%. The relative standard deviation for reproducibility (RSDR) in analyses of baby food ranged from 9.4 to 19.5% and in analyses of animal feed, from 10.5 to 25.2%. The HorRat values ranged from 0.4 to 1.0 and from 0.7 to 1.3, for baby food and animal feed, respectively. The method showed acceptable performance for within-laboratory and between-laboratory precision for each matrix, as required by European legislation.


2005 ◽  
Vol 88 (6) ◽  
pp. 1840-1841 ◽  
Author(s):  
Frank E Jones

Abstract Data from a recent interlaboratory study of the determination of water (moisture) in animal feed, grain, and forage (plant tissue) by Karl Fischer titration were re-analyzed using Youden plots. The purpose was to show the unique ability these plots possess of separating random and systematic errors visually while providing numerical estimates of the precision and the systematic error of the method. Furthermore, the usefulness of the technique is underscored because AOAC INTERNATIONAL allows the use of matched pairs in collaborative studies to obtain estimates of repeatability and reproducibility.


1991 ◽  
Vol 74 (5) ◽  
pp. 830-835 ◽  
Author(s):  
Dalia M Gilvydis ◽  
Stephen M Walters

Abstract An interlaboratory study of the determination of captan, folpet, and captafol in tomatoes, cucumbers, and apples was conducted by 4 laboratories using wide-bore capillary column gas chromatography with electron capture detection. The 3 fungicides were determined using the Luke et al. multlresidue method modified to Include additional solvent elutlon in the optional Florisll column cleanup step used with this method. The crops were fortified with each fungicide at 3 levels per crop. Mean recoveries ranged from 86.2% for a 25.1 ppm level of captan in apples to 115.4% for a 0.288 ppm level of captafol In apples. Interlaboratory coefficients of variation ranged from 3.4% (24.7 ppm folpet) to 9.7% (0.243 ppm captafol) for tomatoes; from 2.8% (2.0 ppm captafol) to 8.2% (24.8 ppm captan) for cucumbers; and from 1.5% (0.234 ppm folpet) to 22.1% (0.266 ppm captafol) for apples.


Sign in / Sign up

Export Citation Format

Share Document