[28] Long-chain fatty acyl-CoA hydrolase from rat liver mitochondria

Author(s):  
Rolf Kristian Berge ◽  
Mikael Farstad
1965 ◽  
Vol 97 (2) ◽  
pp. 587-594 ◽  
Author(s):  
PB Garland ◽  
D Shepherd ◽  
DW Yates

1. Fluorimetric assays are described for CoASH, acetyl-CoA and long-chain fatty acyl-CoA, and are sensitive to at least 50mumumoles of each. 2. Application of these assays to rat-liver mitochondria oxidizing palmitate in the absence and presence of carnitine indicated two pools of intramitochondrial CoA. One pool could be acylated by palmitate and ATP, and the other pool acylated by palmitate with ATP and carnitine, or by palmitoylcarnitine alone. 3. The intramitochondrial content of acetyl-CoA is increased by the oxidation of palmitate both in the absence and presence of l-malate. 4. The conversion of palmitoyl-CoA into acetyl-CoA by beta-oxidation takes place without detectable accumulation of acyl-CoA intermediates.


1998 ◽  
Vol 97 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Nadya M. Gulaya ◽  
Alexander I. Kuzmenko ◽  
Victor M. Margitich ◽  
Nonna M. Govseeva ◽  
Sergij D. Melnichuk ◽  
...  

1983 ◽  
Vol 215 (3) ◽  
pp. 457-464 ◽  
Author(s):  
F Bauché ◽  
D Sabourault ◽  
Y Giudicelli ◽  
J Nordmann ◽  
R Nordmann

In rat liver hypo-osmotically treated mitochondria, 2-mercaptoacetate inhibits respiration induced by palmitoyl-CoA, octanoate or butyryl-CoA only when the reaction medium is supplemented with ATP. Under this condition, NADH-stimulated respiration is not affected. In liver mitochondrial matrix, the presence of ATP is also required to observe a 2-mercaptoacetate-induced inhibition of acyl-CoA dehydrogenases tested with palmitoyl-CoA, butyryl-CoA or isovaleryl-CoA as substrate. As the oxidation of these substrates is also inhibited by the incubation medium resulting from the reaction of 2-mercaptoacetate with acetyl-CoA synthase, with conditions under which 2-mercaptoacetate has no effect, 2-mercaptoacetyl-CoA seems to be the likely inhibitory metabolite responsible for the effects of 2-mercaptoacetate. Kinetic experiments show that the main effect of the 2-mercaptoacetate-active metabolite is to decrease the affinities of fatty acyl-CoA dehydrogenases towards palmitoyl-CoA or butyryl-CoA and of isovaleryl-CoA dehydrogenase towards isovaleryl-CoA. Addition of N-ethylmaleimide to mitochondrial matrix pre-exposed to 2-mercaptoacetate results in the immediate reversion of the inhibitions of palmitoyl-CoA and isovaleryl-CoA dehydrogenations and in a delayed reversion of butyryl-CoA dehydrogenation. These results led us to conclude that (i) the ATP-dependent conversion of 2-mercaptoacetate into an inhibitory metabolite takes place in the liver mitochondrial matrix and (ii) the three fatty acyl-CoA dehydrogenases and isovaleryl-CoA dehydrogenase are mainly competitively inhibited by this compound. Finally, the present study also suggests that the inhibitory metabolite of 2-mercaptoacetate may bind non-specifically to, or induce conformational changes at, the acyl-CoA binding sites of these dehydrogenases.


FEBS Letters ◽  
1972 ◽  
Vol 23 (3) ◽  
pp. 303-308 ◽  
Author(s):  
W.J. Vaartjes ◽  
A. Kemp ◽  
J.H.M. Souverijn ◽  
S.G. van den Bergh

Sign in / Sign up

Export Citation Format

Share Document