[14] Continuous-flow assays with nylon tube-immobilized bioluminescent enzymes

Author(s):  
Aldo Roda ◽  
Stefano Girotti ◽  
Severino Ghini ◽  
Giacomo Carrea
Keyword(s):  
1980 ◽  
Vol 26 (12) ◽  
pp. 1652-1655 ◽  
Author(s):  
W Hinsch ◽  
A Antonijewić ◽  
P V Sundaram

Abstract We describe routine methods for determining glucose in plasma with use of aldehyde dehydrogenase or glucose oxidase-aldehyde dehydrogenase immobilized in a nylon tube that is integrated into a continuous-flow system. Although the coupled-enzyme nylon-tube reactors require the presence of a third enzyme, catalase, in solution, the kinetics are not so complicated as to preclude reliable routine determination of glucose at very low cost. Precision is good, and results correlate well with those by the method involving glucose oxidase in solution. More than 3000 tests may be carried out with one reactor. The immobilized enzymes are stable for several months at 4 degrees C when not in use.


1979 ◽  
Vol 25 (2) ◽  
pp. 285-288 ◽  
Author(s):  
P V Sundaram ◽  
W Hinsch

Abstract We describe the use of a continuous-flow clinical analyzer with an immobilized coupled-enzyme nylon tube reactor and an immobilized single-enzyme nylon tube reactor for routine estimation of lactate and pyruvate in serum. These reactors are incorporated into the flow system of a modified continuous-flow analyzer (Technicon AutoAnalyzer). Results for serum lactate and pyruvate by this method are compared with those by corresponding methods in which the same enzymes are used in solution, either automatically (pyruvate) or manually (lactate) performed. Routine clinical laboratory determinations with use of the coupled-enzyme system lactate dehydrogenase and alanine aminotransferase, co-immobilized in the nylon tube reactor for estimation of lactate, and lactate dehydrogenase reactors for estimation of pyruvate give reliable and reproducible results with high precision at low cost.


2020 ◽  
Vol 22 (19) ◽  
pp. 6437-6443
Author(s):  
Cheng-Kou Liu ◽  
Meng-Yi Chen ◽  
Xin-Xin Lin ◽  
Zheng Fang ◽  
Kai Guo

A catalyst-, oxidant-, acidic solvent- and quaternary ammonium salt-free electrochemical para-selective hydroxylation of N-arylamides at rt in batch and continuous-flow was developed.


2021 ◽  
Vol 147 (3) ◽  
pp. 04021002
Author(s):  
Wenrui Qu ◽  
Shaojie Liu ◽  
Qun Zhao ◽  
Yi Qi

2000 ◽  
Vol 627 ◽  
Author(s):  
M. E. Swanson ◽  
M. Landreman ◽  
J. Michel ◽  
J. Kakalios

ABSTRACTWhen an initially homogeneous binary mixture of granular media such as fine and coarse sand is poured near the closed edge of a “quasi-two-dimensional” Hele-Shaw cell consisting of two vertical transparent plates held a narrow distance apart, the mixture spontaneously forms alternating segregated layers. Experimental measurements of this stratification effect are reported in order to determine which model, one which suggests that segregation only occurs when the granular material contained within a metastable heap between the critical and maximum angle of repose avalanches down the free surface, or one for which the segregation results from smaller particles becoming trapped in the top surface and being removed from the moving layer during continuous flow. The result reported here indicate that the Metastable Wedge model provides a natural explanation for the initial mixed zone which precedes the formation of the layers, while the Continuous Flow model explains the observed upward moving kink of segregated material for higher granular flux rates, and that both mechansims are necessary in order to understand the observed pairing of segregated layersfor intermediate flow rates and cell separations.


Sign in / Sign up

Export Citation Format

Share Document