[25] Utilization of the inhibitor protein of adenosine cyclic monophosphate-dependent protein kinase, and peptides derived from it, as tools to study adenosine cyclic monophosphate-mediated cellular processes

Author(s):  
Donal Awalsh ◽  
David B. Glass
Proteins ◽  
1987 ◽  
pp. 631-639
Author(s):  
Heung-Chin Cheng ◽  
Bruce E. Kemp ◽  
Alan J. Smith ◽  
Richard B. Pearson ◽  
Scott M. Van Patten ◽  
...  

Author(s):  
Donal A. Walsh ◽  
Karen L. Angelos ◽  
Scott M. Van Patten ◽  
David B. Glass ◽  
Lawrence P. Garetto

1994 ◽  
Vol 267 (1) ◽  
pp. C236-C244 ◽  
Author(s):  
J. Geiger ◽  
C. Nolte ◽  
U. Walter

Stimulation of Ca2+ mobilization and entry by agonists such as ADP, thrombin, and thromboxane is an early step of platelet activation. Here, we compared the effects of adenosine 3',5'-cyclic monophosphate (cAMP)-elevating prostaglandins, guanosine 3',5'-cyclic monophosphate (cGMP)-elevating nitrovasodilators, membrane-permeant selective activators of cAMP- or cGMP-dependent protein kinases, and physiological endothelium-derived factors on the agonist-evoked Ca2+ mobilization and entry in human platelets. Prostaglandin E1, the prostacyclin analogue Iloprost, the nitric oxide (NO) donor 3-morpholinosydnonimine hydrochloride, and selective activators of cGMP- or cAMP-dependent protein kinase strongly inhibited the agonist-evoked Ca2+ mobilization from intracellular stores and associated late Ca2+ entry but had little effects on the rapid (1st) phase of ADP-evoked Ca2+ entry. During coincubation of platelets with endothelial cells, endothelium-derived factors that were released strongly inhibited platelet agonist-evoked Ca2+ mobilization and only moderately affected the rapid phase of ADP-evoked Ca2+ entry. These effects were partially prevented when endothelial cells were preincubated with cyclooxygenase and/or NO synthase inhibitors. Endothelial cells therefore produce sufficient quantities of labile platelet inhibitors whose effects on the platelet Ca2+ response resemble those observed with selective cAMP- and cGMP-dependent protein kinase activators.


1997 ◽  
Vol 272 (5) ◽  
pp. L865-L871 ◽  
Author(s):  
B. Tolloczko ◽  
Y. L. Jia ◽  
J. G. Martin

Agents increasing intracellular adenosine 3',5'-cyclic monophosphate (cAMP) cause relaxation of airway smooth muscle. However, the mechanisms of their action are not fully understood. We investigated the role of cAMP in the modulation of intracellular Ca2+ concentration ([Ca2+]i) transients evoked by serotonin (5-HT) in cultured rat tracheal smooth muscle (TSM) cells. Forskolin (10(-7) M) caused a significant elevation of intracellular cAMP and a 60% relaxation of tracheal rings contracted with 5-HT but did not affect [Ca2+]i in TSM cells. Forskolin (10(-5) M) completely relaxed tracheal rings and significantly decreased [Ca2+]i during the sustained phase of the 5-HT response. Forskolin-induced relaxation was attenuated by the cAMP-dependent protein kinase A (PKA) inhibitor Rp diastereomer of cAMP (Rp-cAMPS; 10(-4) M) and by the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) inhibitor [Rp isomer of 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate, 10(-4) M]. The effects of forskolin on [Ca2+]i were not altered by the PKA inhibitor but were abolished by the PKG inhibitor and thapsigargin. These results indicate that, in rat TSM, the relaxant effects of high concentrations of cAMP may be mediated, at least in part, by facilitating the sequestration of Ca2+ into intracellular stores by a mechanism involving PKG.


Sign in / Sign up

Export Citation Format

Share Document