prokaryotic expression
Recently Published Documents


TOTAL DOCUMENTS

417
(FIVE YEARS 62)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Bo Wang ◽  
Shuang Li ◽  
Yongbo Qiao ◽  
Yu Fu ◽  
Jiaojiao Nie ◽  
...  

Abstract Background Canine distemper virus (CDV), which is highly infectious, has caused outbreaks of varying scales in domestic and wild animals worldwide, so the development of a high-efficiency vaccine has broad application prospects. Currently, the commercial vaccine of CDV is an attenuated vaccine, which has the disadvantages of a complex preparation process, high cost and safety risk. It is necessary to develop a safe and effective CDV vaccine that is easy to produce on a large scale. In this study, sequences of CDV haemagglutinin (HA) from the Yanaka strain were aligned, and three potential linear sequences, termed YaH3, YaH4, and YaH5, were collected. To increase the immunogenicity of the epitopes, ferritin was employed as a self-assembling nanoparticle element. The ferritin-coupled forms were termed YaH3F, YaH4F, and YaH5F, respectively. A full-length HA sequence coupled with ferritin was also constructed as a DNA vaccine to compare the immunogenicity of nanoparticles in prokaryotic expression. Result The self-assembly morphology of the proteins from prokaryotic expression was verified by transmission electron microscopy. All the proteins self-assembled into nanoparticles. The expression of the DNA vaccine YaHF in HEK-293T cells was also confirmed in vitro. After subcutaneous injection of epitope nanoparticles or intramuscular injection of DNA YaHF, all vaccines induced strong serum titres, and long-term potency of antibodies in serum could be detected after 84 days. Strong anti-CDV neutralizing activities were observed in both the YaH4F group and YaHF group. According to antibody typing and cytokine detection, YaH4F can induce both Th1 and Th2 immune responses. The results of flow cytometry detection indicated that compared with the control group, all the immunogens elicited an increase in CD3. Simultaneously, the serum antibodies induced by YaH4F and YaHF could significantly enhance the ADCC effect compared with the control group, indicating that the antibodies in the serum effectively recognized the antigens on the cell surface and induced NK cells to kill infected cells directly. Conclusions YaH4F self-assembling nanoparticle obtained by prokaryotic expression has no less of an immune effect than YaHF, and H4 has great potential to become a key target for the easy and rapid preparation of epitope vaccines. Graphical Abstract


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Junmei Jiang ◽  
Jun Chen ◽  
Liting Luo ◽  
Lujie Wang ◽  
Hao Ouyang ◽  
...  

SGT1 (suppressor of the skp1 G2 allele) is an important plant disease resistance-related protein, which plays an important role in plant resistance to pathogens and regulates signal transduction during the process of plant disease resistance. In this study, we analyzed the expression profile of SbSGT1 in sorghum under phytohormones treatment. Quantitative real-time PCR results showed that SbSGT1 was most expressed in sorghum leaves, and could respond to plant hormones such as auxin, abscisic acid, salicylic acid, and brassinolide. Subsequently, we determined the optimal soluble prokaryotic expression conditions for SbSGT1 and purified it using a protein purification system in order to evaluate its potential interactions with plant hormones. Microscale thermophoretic analysis showed that SbSGT1 exhibited significant interactions with indole-3-acetic acid (IAA), with a Kd value of 1.5934. Furthermore, the transient expression of SbSGT1 in Nicotiana benthamiana indicated that treatment with exogenous auxin could inhibit SbSGT1 expression, both at the transcriptional and translational level, demonstrating that there exists an interaction between SbSGT1 and auxin.


2021 ◽  
Vol 8 ◽  
Author(s):  
Han Zhang ◽  
Lei Wang ◽  
Xiang Yang ◽  
Zhiwei Lian ◽  
Yinbin Qiu ◽  
...  

Conopeptides from the marine cone snails are a mixture of cysteine-rich active peptides, representing a unique and fertile resource for neuroscience research and drug discovery. The ConoServer database includes 8,134 conopeptides from 122 Conus species, yet many more natural conopeptides remain to be discovered. Here, we identified 517 distinct conopeptide precursors in Conus quercinus using de novo deep transcriptome sequencing. Ten of these precursors were verified at the protein level using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The combined gene and protein analyses revealed two novel gene superfamilies (Que-MNCLQ and Que-MAMNV), and three other gene superfamilies (N, P, and I1) were reported for the first time in C. quercinus. From the Que-MAMNV superfamily, a novel conotoxin, Que-0.1, was obtained via cloning and prokaryotic expression. We also documented a new purification process that can be used to induce the expression of conopeptides containing multiple pairs of disulfide bonds. The animal experiments showed that Que-0.1 strongly inhibited neuroconduction; the effects of Que-1.0 were 6.25 times stronger than those of pethidine hydrochloride. In addition, a new cysteine framework (CC-C-C-C-C-C-CC-C-C-C-C-C) was found in C. quercinus. These discoveries accelerate our understanding of conopeptide diversity in the genus, Conus and supply promising materials for medical research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuli Chen ◽  
Hui Li ◽  
Lichao Yang ◽  
Sha Wen ◽  
Xuejing Huang ◽  
...  

Abstract Background Never in mitosis gene-A (NIMA)-related expressed kinase 2 (NEK2) is a serine/threonine protein kinase regulated by the cell cycle. The purpose of this study was to obtain NEK2 protein to prepare an anti-NEK2 monoclonal antibody (mAb) and explore the application of the anti-NEK2 mAb of therapeutic and diagnostic in hepatocellular carcinoma (HCC). Results The NEK2 gene sequence was cloned from the normal liver cell line HL7702, and the full-length NEK2 gene sequence was cloned into the prokaryotic expression vector pET30a and transformed into Escherichia coli BL21 (DE3) cells. The recombinant fusion protein was obtained under optimized conditions and injected in BALB/c mice to prepare an anti-NEK2 mAb. By screening, we obtained a stable hybridoma cell line named 3A3 that could stably secrete anti-NEK2 mAb. Anti-NEK2 3A3 mAb was purified from ascites fluid. The isotype was IgG1, and the affinity constant (Kaff) was 6.0 × 108 L/mol. Western blot, indirect enzyme-linked immunosorbent assay (iELISA), immunofluorescence and immunocytochemical analyses showed that the mAb could specifically recognize the NEK2 protein. MTT assays showed that the mAb 3A3 could inhibit the proliferation of HCC cells. KEGG pathway analysis showed that NEK2 might affected pathways of the cell cycle. Moreover, NEK2-related genes were mainly enriched in the S and G2 phases and might act as tumor-promoting genes by regulating the S/G2 phase transition of HCC cells. Conclusions An anti-NEK2 mAb with high potency, high affinity and high specificity was prepared by prokaryotic expression system in this study and may be used in the establishment of ELISA detection kits and targeted treatment of liver cancer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258553
Author(s):  
Manabu Murakami ◽  
Agnieszka M. Murakami ◽  
Shirou Itagaki

In this study, we introduced an efficient subcloning and expression system with two inducible prokaryotic expression promoters, arabinose and lac, in a single plasmid in Escherichia coli. The arabinose promoter unit allows for the expression of a FLAG-tagged protein, while the isopropyl-β-D-thiogalactoside (IPTG)-inducible unit allows for the expression of a Myc-tagged protein. An efficient subcloning (DNA insertion) system (iUnit) follows each promoter. The iUnit, based on a toxin that targets DNA topoisomerase of E. coli, allows for effective selection with arabinose or IPTG induction. With the dual promoter plasmid (pdMAX) system, expressed lacZ (β-galactosidase) activity was significantly decreased compared with the original solo expression system. Despite this disadvantage, we believe that the pdMAX system remains useful. A recombinant plasmid (pdMAX/ara/DsRed/IPTG/EGFP; pdMAX/DsRed/EGFP) with DsRed in the arabinose expression unit and EGFP in the IPTG expression unit showed fluorescent protein expression following additional low-temperature incubation. Thus, the novel pdMAX system allowed efficient subcloning of two different genes and can be used to induce and analyze the expression of two distinct genes. The proposed system can be applied to various types of prokaryotic gene expression analysis.


2021 ◽  
Author(s):  
Wenyue Xing ◽  
Li Li ◽  
Jingnan Zhang ◽  
Chunli Ma ◽  
Xin Xue ◽  
...  

Abstract Background: Rubella virus (RV) is the causative agent of rubella or German measles. Although most infections cause only mild self-limited measles-like illness, the infection in pregnant women can cause severe foetal malformation or even miscarriage, especially in the first 3 months of pregnancy. Therefore, it is of great practical significance to establish a simple and sensitive RV detection method.Methods: The partial epitopes of the E1 and E2 proteins from Rubella Virus were selected as the target sites, the sequence of the selected antigenic sites of the E1 and E2 were linked by a linker. The expression plasmid P6T was constructed by inserting the gene into PET-32A + with a His tag. The P6 protein was induced and expressed in Escherichia coli L21 DE3 and purified by nickel column affinity. The protein P6 antigen was identified by Western blotting, and an anti-P6 antibody ELISA was established to test known serum samples to evaluate the capability of this method.Results: After purification, the concentration and purity of the protein P6 were 0.283 mg/mL and more than 80%, respectively. Western blotting showed that the protein P6 could react with rubella virus positive serum. By ELISA, 36 negative sera and 58 positive sera were detected. The coincidence rate, specificity and sensitivity of the ELISA were 88.89%, 84.48% and 84.48%, respectively. The P6 ELISA with a kappa coefficient of 0.709, P<0.05, indicated excellent consistency.Conclusions: The P6 protein with excellent antigenicity obtained from prokaryotic expression followed by chromatography purification could prove useful for early diagnosis of RV infection.


Sign in / Sign up

Export Citation Format

Share Document