A quantitative assay for Xenopus 5S RNA gene transcription in vitro

Cell ◽  
1981 ◽  
Vol 24 (3) ◽  
pp. 809-817 ◽  
Author(s):  
W.Michael Wormington ◽  
Daniel F. Bogenhagen ◽  
Eddie Jordan ◽  
Donald D. Brown
1989 ◽  
Vol 264 (31) ◽  
pp. 18707-18713 ◽  
Author(s):  
K Matsuno ◽  
C C Hui ◽  
S Takiya ◽  
T Suzuki ◽  
K Ueno ◽  
...  

Cell ◽  
1987 ◽  
Vol 49 (3) ◽  
pp. 301-302 ◽  
Author(s):  
Alan P. Wolffe ◽  
Matthew T. Andrews ◽  
Eric Crawford ◽  
Riccardo Losa ◽  
Donald D. Brown

1989 ◽  
Vol 9 (12) ◽  
pp. 5315-5323 ◽  
Author(s):  
J Imbert ◽  
M Zafarullah ◽  
V C Culotta ◽  
L Gedamu ◽  
D Hamer

Metallothionein (MT) gene promoters in higher eucaryotes contain multiple metal regulatory elements (MREs) that are responsible for the metal induction of MT gene transcription. We identified and purified to near homogeneity a 74-kilodalton mouse nuclear protein that specifically binds to certain MRE sequences. This protein, MBF-I, was purified employing as an affinity reagent a trout MRE that is shown to be functional in mouse cells but which lacks the G+C-rich and SP1-like sequences found in many mammalian MT gene promoters. Using point-mutated MREs, we showed that there is a strong correlation between DNA binding in vitro and MT gene regulation in vivo, suggesting a direct role of MBF-I in MT gene transcription. We also showed that MBF-I can induce MT gene transcription in vitro in a mouse extract and that this stimulation requires zinc.


1987 ◽  
Vol 7 (10) ◽  
pp. 3503-3510 ◽  
Author(s):  
L J Peck ◽  
L Millstein ◽  
P Eversole-Cire ◽  
J M Gottesfeld ◽  
A Varshavsky

An extract from whole oocytes of Xenopus laevis was shown to transcribe somatic-type 5S RNA genes approximately 100-fold more efficiently than oocyte-type 5S RNA genes. This preference was at least 10-fold greater than the preference seen upon microinjection of 5S RNA genes into oocyte nuclei or upon in vitro transcription in an oocyte nuclear extract. The approximately 100-fold transcriptional bias in favor of the somatic-type 5S RNA genes observed in vitro in the whole oocyte extract was similar to the transcriptional bias observed in developing Xenopus embryos. We also showed that in the whole oocyte extract, a promoter-binding protein required for 5S RNA gene transcription, TFIIIA, was bound both to the actively transcribed somatic-type 5S RNA gene and to the largely inactive oocyte-type 5S RNA genes. These findings suggest that the mechanism for the differential expression of 5S RNA genes during Xenopus development does not involve differential binding of TFIIIA to 5S RNA genes.


Sign in / Sign up

Export Citation Format

Share Document