Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans

Cell ◽  
1990 ◽  
Vol 61 (6) ◽  
pp. 939-951 ◽  
Author(s):  
Geraldine Seydoux ◽  
Tim Schedl ◽  
Iva Greenwald
Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 53-57
Author(s):  
Judith Austin ◽  
Eleanor M. Maine ◽  
Judith Kimble

Cell–cell interactions play a significant role in controlling cell fate during development of the nematode Caenorhabditis elegans. It has been found that two genes, glp-1 and lin-12, are required for many of these decisions, glp-1 is required for induction of mitotic proliferation in the germline by the somatic distal tip cell and for induction of the anterior pharynx early in embryogenesis. lin-12 is required for the interactions between cells of equivalent developmental potential, which allow them to take on different fates. Comparison of these two genes on a molecular level indicates that they are similar in sequence and organization, suggesting that the mechanisms of these two different sets of cell–cell interactions are similar.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Erick Armingol ◽  
Chintan Joshi ◽  
Hratch Matthew Baghdassarian ◽  
Isaac Shamie ◽  
Nathan Lewis

2020 ◽  
Author(s):  
Erick Armingol ◽  
Chintan J. Joshi ◽  
Hratch Baghdassarian ◽  
Isaac Shamie ◽  
Abbas Ghaddar ◽  
...  

AbstractCell-cell interactions are crucial for multicellular organisms as they shape cellular function and ultimately organismal phenotype. However, the spatial code embedded in the molecular interactions that drive and sustain spatial organization, and in the organization that in turns drives intercellular interactions across a living animal remains to be elucidated. Here we use the expression of ligand-receptor pairs obtained from a whole-body single-cell transcriptome of Caenorhabditis elegans larvae to compute the potential for intercellular interactions through a Bray-Curtis-like metric. Leveraging a 3D atlas of C. elegans’ cells, we implement a genetic algorithm to select the ligand-receptor pairs most informative of the spatial organization of cells. Validating the strategy, the selected ligand-receptor pairs are involved in known cell-migration and morphogenesis processes and we confirm a negative correlation between cell-cell distances and interactions. Thus, our computational framework helps identify cell-cell interactions and their relationship with intercellular distances, and decipher molecular bases encoding spatial information in a whole animal. Furthermore, it can also be used to elucidate associations with any other intercellular phenotype and applied to other multicellular organisms.Graphical abstract


Development ◽  
2000 ◽  
Vol 127 (15) ◽  
pp. 3295-3303 ◽  
Author(s):  
B. Jungblut ◽  
R.J. Sommer

Vulva development differs between Caenorhabditis elegans and Pristionchus pacificus in several ways. Seven of 12 ventral epidermal cells in P. pacificus die of apoptosis, whereas homologous cells in C. elegans fuse with the hypodermal syncytium. Vulva induction is a one-step process in C. elegans, but requires a continuous interaction between the gonad and the epidermis in P. pacificus. Here we describe several novel cell-cell interactions in P. pacificus, focusing on the vulva precursor cell P8.p and the mesoblast M. P8.p in P. pacificus, unlike its homologous cell in C. elegans, is incompetent to respond to gonadal signaling in the absence of other vulva precursor cells, but can respond to lateral signaling from a neighboring vulval precursor. P8.p provides an inhibitory signal that determines the developmental competence of P(5,7).p. This lateral inhibition acts via the mesoblast M and is regulated by the homeotic gene Ppa-mab-5. In Ppa-mab-5 mutants, M is misspecified and provides inductive signaling to the vulval precursor cells, including P8.p. Taken together, vulva development in P. pacificus displays novel cell-cell interactions involving the mesoblast M and P8.p. In particular, P8.p represents a new ventral epidermal cell type, which is characterized by novel interactions and a specific response to gonadal signaling.


2007 ◽  
Vol 2 (S 1) ◽  
Author(s):  
I Lukic ◽  
S Stoyanov ◽  
A Erhardt ◽  
P Nawroth ◽  
A Bierhaus

Sign in / Sign up

Export Citation Format

Share Document