On the theory of dissipative three-dimensional wave motion

1981 ◽  
Vol 8 (2) ◽  
pp. 83-92 ◽  
Author(s):  
P RENNO
1962 ◽  
Vol 12 (1) ◽  
pp. 1-34 ◽  
Author(s):  
P. S. Klebanoff ◽  
K. D. Tidstrom ◽  
L. M. Sargent

An experimental investigation is described in which principal emphasis is given to revealing the nature of the motions in the non-linear range of boundary-layer instability and the onset of turbulence. It has as its central purpose the evaluation of existing theoretical considerations and the provision of a sound physical model which can be taken as a basis for a theoretical approach. The experimental method consisted of introducing, in a two-dimensional boundary layer on a flat plate at ‘incompressible’ speeds, three-dimensional disturbances under controlled conditions using the vibrating-ribbon technique, and studying their growth and evolution using hot-wire methods. It has been definitely established that longitudinal vortices are associated with the non-linear three-dimensional wave motions. Sufficient data were obtained for an evaluation of existing theoretical approaches. Those which have been considered are the generation of higher harmonics, the interaction of the mean flow and the Reynold stress, the concave streamline curvature associated with the wave motion, the vortex loop and the non-linear effect of a three-dimensional perturbation. It appears that except for the latter they do not adequately describe the observed phenomena. It is not that they are incorrect or may not play a role in some aspect of the local behaviour, but from the over-all point of view the results suggest that it is the non-linear effect of a three-dimensional perturbation which dominates the behaviour. A principal conclusion to be drawn is that a new perspective, one that takes three-dimensionality into account, is required in connexion with boundary-layer instability. It is demonstrated that the actual breakdown of the wave motion into turbulence is a consequence of a new instability which arises in the aforementioned three-dimensional wave motion. This instability involves the generation of ‘hairpin’ eddies and is remarkably similar in behaviour to ‘inflexional’ instability. It is also shown that the results obtained from the study of controlled disturbances are equally applicable to ‘natural’ transition.


2017 ◽  
Vol 31 (5) ◽  
pp. 539-548
Author(s):  
Ping Wang ◽  
Ning-chuan Zhang ◽  
Shuai Yuan ◽  
Wei-bin Chen

2015 ◽  
Vol 17 (30) ◽  
pp. 19806-19814 ◽  
Author(s):  
Mahmoud M. Ayass ◽  
Istvan Lagzi ◽  
Mazen Al-Ghoul

We report multiple three-dimensional wave phenomena in a heterogeneous system due to anomalous diffusion.


Parasitology ◽  
1990 ◽  
Vol 101 (2) ◽  
pp. 301-308 ◽  
Author(s):  
D. L. Lee ◽  
W. D. Biggs

Locomotion of adult Nippostrongylus brasiliensis has been studied in saline, in 0.6% agar, in sodium alginate of different viscosities and amongst sand grains in these media. In saline the nematode formed two-dimensional waves but there was little forward progression. Amongst sand grains in saline the nematode moved forwards by thrusting against sand grains, but thigmokinetic behaviour later resulted in quiescence. In 0.6% agar and in alginates of weak viscosity the nematode produced two-dimensional waves and sometimes a three-dimensional helical wave which resulted in forward movement. The formation of three-dimensional waves and the distance travelled increased with increasing viscosity up to 4% sodium alginate and also amongst sand gains in these media. In 8% sodium alginate the nematode became coiled like a spring but remained almost stationary. The three-dimensional wave is formed with torsion and obtains thrust from the viscous medium. In the intestine of the host thrust will be obtained from the mucus and villi of the intestinal mucosa. The ability of this nematode to move by two-and three-dimensional undulatory propulsion is probably related to its complex ridged cuticle. Attention is drawn to the role that increased viscosity of mucus may play in entrapping nematodes during their immune rejection.


Sign in / Sign up

Export Citation Format

Share Document