A closed-form solution of singular regular higher-order difference initial and boundary value problems

1992 ◽  
Vol 48 (2-3) ◽  
pp. 153-166 ◽  
Author(s):  
L. Jódar ◽  
E. Navarro ◽  
J.L. Morera
Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631 ◽  
Author(s):  
Yong-Sheng Lian ◽  
Jun-Yi Sun ◽  
Zhi-Hang Zhao ◽  
Xiao-Ting He ◽  
Zhou-Lian Zheng

In this paper, the well-known Föppl–Hencky membrane problem—that is, the problem of axisymmetric deformation of a transversely uniformly loaded and peripherally fixed circular membrane—was resolved, and a more refined closed-form solution of the problem was presented, where the so-called small rotation angle assumption of the membrane was given up. In particular, a more effective geometric equation was, for the first time, established to replace the classic one, and finally the resulting new boundary value problem due to the improvement of geometric equation was successfully solved by the power series method. The conducted numerical example indicates that the closed-form solution presented in this study has higher computational accuracy in comparison with the existing solutions of the well-known Föppl–Hencky membrane problem. In addition, some important issues were discussed, such as the difference between membrane problems and thin plate problems, reasonable approximation or assumption during establishing geometric equations, and the contribution of reducing approximations or relaxing assumptions to the improvement of the computational accuracy and applicability of a solution. Finally, some opinions on the follow-up work for the well-known Föppl–Hencky membrane were presented.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1017
Author(s):  
Dong Mei ◽  
Jun-Yi Sun ◽  
Zhi-Hang Zhao ◽  
Xiao-Ting He

In this paper, the static problem of equilibrium of contact between an axisymmetric deflected circular membrane and a frictionless rigid plate was analytically solved, where an initially flat circular membrane is fixed on its periphery and pressurized on one side by gas such that it comes into contact with a frictionless rigid plate, resulting in a restriction on the maximum deflection of the deflected circular membrane. The power series method was employed to solve the boundary value problem of the resulting nonlinear differential equation, and a closed-form solution of the problem addressed here was presented. The difference between the axisymmetric deformation caused by gas pressure loading and that caused by gravity loading was investigated. In order to compare the presented solution applying to gas pressure loading with the existing solution applying to gravity loading, a numerical example was conducted. The result of the conducted numerical example shows that the two solutions agree basically closely for membranes lightly loaded and diverge as the external loads intensify.


Author(s):  
Lianwu Yang

AbstractIn this paper, a higher order nonlinear difference equation is considered. By using the critical point theory, we obtain the existence and multiplicity for solutions of difference Dirichlet boundary value problems and give some new results. The proof is based on the variational methods and linking theorem.


1968 ◽  
Vol 64 (2) ◽  
pp. 503-505 ◽  
Author(s):  
W. E. Williams

In a recent paper Srivastav (2) considered the solution of certain two-dimensional mixed boundary-value problems in a wedge-shaped region. The problems were formulated as dual integral equations involving Mellin transforms and were reduced to the solution of a Fredholm integral equation of the second kind. In this paper it will be shown that a closed form solution to the problems treated in (2) may be obtained by elementary means.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
M.-C. Casabán ◽  
J.-C. Cortés ◽  
B. García-Mora ◽  
L. Jódar

This paper deals with the analytic-numerical solution of random heat problems for the temperature distribution in a semi-infinite bar with different boundary value conditions. We apply a random Fourier sine and cosine transform mean square approach. Random operational mean square calculus is developed for the introduced transforms. Using previous results about random ordinary differential equations, a closed form solution stochastic process is firstly obtained. Then, expectation and variance are computed. Illustrative numerical examples are included.


Sign in / Sign up

Export Citation Format

Share Document