95/05996 Process for the catalytic conversion of low molecular weight aromatic hydrocarbons

1995 ◽  
Vol 36 (6) ◽  
pp. 426
2019 ◽  
Vol 17 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Galina S. Pevneva ◽  
Natalya G. Voronetskaya ◽  
Nikita N. Sviridenko ◽  
Anatoly K. Golovko

AbstractThe paper presents the results of investigation of changes in the composition of hydrocarbons and sulfur-containing compounds of an atmospheric residue in the course of cracking in the presence of a tungsten carbide–nickel–chromium (WC/Ni–Cr) catalytic additive and without it. The cracking is carried out in an autoclave at 500 °C for 30 min. The addition of the WC/Ni–Cr additive promotes the deepening of reactions of destruction not only of resins and asphaltenes, but also high molecular weight naphthene-aromatic compounds of the atmospheric residue. It is shown that the content of low molecular weight C9–C17 n-alkanes and C9–C10 alkylbenzenes rose sharply in the products of cracking with addition of WC/Ni–Cr in comparison with those produced without the additive. Alkyl- and naphthene-substituted aromatic hydrocarbons of benzene, naphthalene, phenanthrene series, polyarenes, benzo- and dibenzothiophenes are identified.


1987 ◽  
Vol 59 (17) ◽  
pp. 2066-2069 ◽  
Author(s):  
Filippo. Mangani ◽  
Achille. Cappiello ◽  
Giancarlo. Crescentini ◽  
Fabrizio. Bruner ◽  
Loretta. Bonfanti

2020 ◽  
Vol 17 (6) ◽  
pp. 1527-1539
Author(s):  
Zhong-Xuan Li ◽  
Hai-Ping Huang

AbstractGold-tube pyrolysis experiments were performed on two Athabasca oil sand bitumens at 300 °C to 525 °C with 2 °C/h rate and 25 °C step under 50 MPa. Pyrolysis temperature of 425 °C is critical for weight loss of bulk bitumen and hydrocarbon generation and destruction. Polar compounds are the main source of saturated and aromatic hydrocarbon, gas and coke fractions. Molecular compositions in pyrolyzates vary systematically with increasing pyrolysis temperatures. High molecular weight n-alkanes (C26+) are gradually destructed during pyrolysis due to thermal cracking. Moderate molecular weight n-alkanes (C21–C25) show the highest thermal stability in designed pyrolysis temperatures. The loss of low molecular weight n-alkanes (C20−) might be caused by volatilization during pyrolysis, which may alter commonly used molecular parameters such as ∑n-C20−/∑n-C21+, Pr/n-C17 and Ph/n-C18. Aromatic hydrocarbons were generated from 300 to 425 °C, then condensation and dealkylation have been initiated at 425 °C as evidenced by decreased summed alkylnaphthalenes to alkylphenanthrenes ratios and increased unsubstituted aromatics to substituted homologs ratios in higher temperatures. The occurrence of anthracene and benz[a]anthracene in pyrolysates indicates pyrogenic origin, while fluoranthene shows unexpected behaviors during pyrolysis. Ratios derived from them are not always reliable for pyrogenic source input diagnosis in environmental samples.


Sign in / Sign up

Export Citation Format

Share Document