Cyclic stress-strain behaviour of an austenitic stainless steel Polarit 778 under variable-amplitude loadingSolin, J. Tech. Res. Cent. Finland Report 647

1990 ◽  
Vol 12 (6) ◽  
pp. 529-529
2018 ◽  
Vol 165 ◽  
pp. 15004 ◽  
Author(s):  
Jochen Tenkamp ◽  
Alexander Koch ◽  
Stephan Knorre ◽  
Ulrich Krupp ◽  
Wilhelm Michels ◽  
...  

Aluminium alloys are promising candidates for energy-and cost-efficient components in automotive and aerospace industries, due to their excellent strength-to-weight ratio and relatively low cost compared to titanium alloys. As modern cast processing and post-processing, e.g. hot isostatic pressing, result in decreased frequency and size of defects, the weakest link depends on microstructural characteristics, e.g. secondary dendrite arm spacing (SDAS), Si eutectic morphology and α-Al solid solution hardness. Hereby, fatigue investigations of the effect of the microstructure characteristics on the cyclic stress-strain behaviour as well as fatigue mechanisms in the low cycle and high cycle fatigue regime are performed. For this purpose, samples of the aluminium cast alloy EN AC-AlSi7Mg0.3 with different Si eutectic morphology and α-Al solid solution hardness were investigated. To compare the monotonic and cyclic stress-strain curves, quasistatic tensile tests and incremental step tests were performed on two microstructure conditions. The results show that the cyclic loading leads to a hardening of the material compared to monotonic loading. Based on damage parameter Woehler curves, it is possible to predict the damage progression and fatigue life for monotonic and cyclic loading in hypo-eutectic Al-Si-Mg cast alloys by one power law.


Author(s):  
K. J. Thompson ◽  
R. Park

The stress-strain relationship of Grade 275 steel reinforcing bar under cyclic (reversed) loading is examined using experimental results obtained previously from eleven test specimens to which a variety of axial loading cycles has been applied. A Ramberg-Osgood function is fitted to the experimental stress-strain curves to follow the cyclic stress-strain behaviour after the first load run in the plastic range. The empirical constants in the function are determined by regression analysis and are found to depend mainly on the plastic strain imposed
in the previous loading run. The monotonic stress-strain curve for the steel, with origin of strains suitably adjusted, is assumed to be the envelope curve giving the upper limit of stress. The resulting Ramberg-Osgood expression and envelope is found to give good agreement with the experimentally measured cyclic stress-strain curves.


Sign in / Sign up

Export Citation Format

Share Document