Use of a combined isotropic non-linear kinematic hardening model to predict evolutionary cyclic stress?strain behaviour in an austenitic stainless steel

2001 ◽  
Vol 40 (6) ◽  
pp. 383-389
Author(s):  
M. P. O'Donnell
2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Caiming Liu ◽  
Dunji Yu ◽  
Waseem Akram ◽  
Xu Chen

In this study, the ratcheting behaviors of pressurized Z2CN18.10 austenitic stainless steel elbow pipe influenced by the thermal aging process were experimentally investigated in controlled constant internal pressure and reversed in-plane bending after different thermal aging periods (1000 h and 2000 h) at thermal aging temperature of 500 °C. It is shown that the ratcheting behavior of pressured elbow pipe is highly affected by the thermal aging process. The evaluation of ratcheting behavior of pressured elbow pipe was performed using Chen–Jiao–Kim (CJK) kinematic hardening model as a user subroutine of ANSYS. The relationships of yield stress σs and multiaxial parameter χ with thermal aging time were proposed. Ratcheting shakedown boundary of aged elbow pipe was evaluated by CJK model with thermal aging time.


2016 ◽  
Vol 853 ◽  
pp. 112-116
Author(s):  
Yong Wang ◽  
You Gang Peng ◽  
Xu Chen

Uniaxial ratcheting behaviors of Z2CN18.10 austenitic stainless steel under both tensile pre-strain (TP) and compressive pre-strain (CP) were experimentally studied at room temperature. The experimental results show that: TP restrains ratcheting strain accumulation of subsequent cycling with positive mean stress; lower level of CP is found to accelerate ratcheting strain accumulation while higher level of CP retards the accumulation. Based on the Ohno-Wang II kinematic hardening rule, rate-independent model, viscoplastic model, isotropic hardening model and a modified model were constructed to describe the ratcheting behaviors under various pre-strain conditions. All the four models gave fairly good prediction on ratcheting strains for various TP. The isotropic hardening model and modified model predicted acceptable ratcheting strain though still showed slight tendency of over prediction.


Sign in / Sign up

Export Citation Format

Share Document