Super piles prove their use for bridge abutment foundations

Author(s):  
Anonymous
Keyword(s):  
2017 ◽  
Vol 45 (3) ◽  
pp. 227-236 ◽  
Author(s):  
F. Schnaid ◽  
D. Winter ◽  
A.E.F. Silva ◽  
D. Alexiew ◽  
V. Küster

2016 ◽  
Vol 28 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Y. Abdallah Mohamed ◽  
G. Mohamed Abdel-Aal ◽  
T. Hemdan Nasr-Allah ◽  
Awad A. Shawky

2014 ◽  
Vol 716-717 ◽  
pp. 342-346
Author(s):  
Xiao Jun Zhou ◽  
Bo Jiang ◽  
Yue Feng Zhou ◽  
Yu Yu

On the basis of different landform and multifarious topography in rugged mountainous area in southwest China, typical tunnel portals for single track tunnels in a new high speed railway line have been presented in the paper. The portal comprises headwall, shed tunnel, bridge abutment and its support. Portal with headwall is suitable for tunnel to resist front earth pressure on high and abrupt slope. Shed tunnel is placed in front of headwall so as to prevent rockfall; its outward part is built into a flared one. Meanwhile, the installation of bridge and its abutment are also included in the portal according to landform in the paper.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1881
Author(s):  
Takuya Inoue ◽  
Jagriti Mishra ◽  
Kazuo Kato ◽  
Tamaki Sumner ◽  
Yasuyuki Shimizu

Here, we provide a numerical model that assigns an identification number to trace sediments and also identify the source of sediment supply. We analyze the efficacy of our model by reproducing the reach-scale field observations from flooding events in 2010 and 2016 that affected Kyusen Bridge over the Bebetsu River, Hokkaido, Japan. Our simulation results can successfully reproduce and trace the formation of bars caused by sediment supply in the study region. Our study also suggests a strong relationship between bank erosion rate, sediment supply and flow-discharge. The bank erosion rate is higher when sediment supply increases, and bank erosion reduces as flow discharge goes down. The model can also replicate the changes in a bed concerning sediment supply and was used to reproduce the bridge-abutment failure caused by the 2016 flooding with large sediment supply and the bridge-pier failure caused by the 2010 flooding with less sediment supply.


Sign in / Sign up

Export Citation Format

Share Document