Geotextile encased columns (GEC) used as pressure-relief system. Instrumented bridge abutment case study on soft soil

2017 ◽  
Vol 45 (3) ◽  
pp. 227-236 ◽  
Author(s):  
F. Schnaid ◽  
D. Winter ◽  
A.E.F. Silva ◽  
D. Alexiew ◽  
V. Küster
1985 ◽  
Vol 4 (3) ◽  
pp. 161-163 ◽  
Author(s):  
Brenton G. Jones ◽  
Raymond C. Duckett

2021 ◽  
Vol 11 (22) ◽  
pp. 10744
Author(s):  
Changliang Han ◽  
Houqiang Yang ◽  
Nong Zhang ◽  
Rijian Deng ◽  
Yuxin Guo

The gob-side roadway in an isolated island working face is a typical representative of a strong mining roadway, which seriously restricts the efficient and safe production of underground coal mines. With the engineering background of the main transportation roadway 1513 (MTR 1513) of the Xinyi Coal Mine, this paper introduces the engineering case of gob-side roadway driving with small coal-pillar facing mining in an isolated island working face under the alternate mining of wide and narrow working faces. Through comprehensive research methods, we studied zoning disturbance deformation characteristics and stress evolution law of gob-side roadway driving under face mining. Based on the characteristics of zoning disturbance, MTR 1513 is divided into three zones, which are the heading face mining zone, the mining influenced zone, and the mining stability zone. A collaborative control technology using pressure relief and anchoring is proposed, and the differentiated control method is formed for the three zones. For the heading face mining zone, the control method of anchoring first and then pressure relief is adopted; for the mining influenced zone, the control idea of synchronous coordination of pressure relief and anchorage is adopted; for the mining stability zone, the control method of anchoring without pressure relief is adopted. Engineering practices show that the disturbance influence distance of working face 1511 on MTR 1513 changes from 110 m advanced to 175 m delay. At this time, the surrounding rock deformation is effectively controlled, which verified the rationality of the division and the feasibility of three zoning control technology. The research results can provide reference for gob-side roadway driving with small coal pillar facing mining in a special isolated island working face.


2020 ◽  
Vol 97 ◽  
pp. 103236 ◽  
Author(s):  
Yajun Wang ◽  
Manchao He ◽  
Jun Yang ◽  
Qi Wang ◽  
Jianning Liu ◽  
...  

Author(s):  
A. M. Birk

The design margin on certain unfired pressure vessels has recently been reduced from 4.5 to 4.0 to 3.5. This has resulted in the manufacture of propane and LPG tanks with thinner walls. For example, some 500 gallon ASME code propane tanks have had the wall thickness reduced from 7.7 mm in 2001 to 7.1 mm in 2002 and now to 6.5 mm in 2004. This change significantly affects the fire survivability of these tanks. This paper presents both experimental and computational results that show the effect of this design change on tank fire survivability to fire impingement. The results show that for the same pressure relief valve setting, the thinner wall tanks are more likely to fail in a given fire situation. In severe fires, the thinner walled tanks will fail earlier. An earlier failure usually means the tank will fail with a higher fill level, because the pressure relief system has had less time to vent material from the tank. A higher liquid fill level at failure also means more energy is in the tank and this means the failure will be more violent. The worst failure scenario is known as a boiling liquid expanding vapour explosion (BLEVE) and this mode of failure is also more likely with the thinner walled tanks. The results of this work suggest that certain applications of pressure vessels such as propane transport and storage may require higher design margins than required by the ASME.


2013 ◽  
Vol 753-755 ◽  
pp. 2659-2662
Author(s):  
Zhi Qing Wu ◽  
Hao Hui Shi

The hydraulic cylinder should be safety released in high-pressure situations, the release valve system is presented under such situation in this paper, which can release the high pressure from the hydraulic cylinder, in order to validate its feasibility, the simulation model of pressure release system is established in AMESim, the pressure release process of which is studied, the results show that the pressure relief system can release the high pressure of hydraulic cylinder smoothly, the pressure release system verifies the pressure control performance of control system, some of the parameters or factors of pressure release system are analyzed.


2016 ◽  
Vol 11 (1) ◽  
pp. 10-19 ◽  
Author(s):  
T. Bhatkar ◽  
D. Barman ◽  
A. Mandal ◽  
A. Usmani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document