In situ strength and total stress analysis for an embankment of a soft foundation Poopath, V Proc International Symposium of Geotechnical Aspects of Soft Clays, Bangkok, 5–6 July 1977, P547–577. Publ Bangkok: Asian Institute of Technology, 1977

2011 ◽  
Vol 90-93 ◽  
pp. 217-221
Author(s):  
Jin Long Zhou ◽  
Qiao Li ◽  
Wei Zhong Cai

Through the investigation into composition of major shallow foundation soil mass and the correlation of mechanical indicators in this study, the regression equation of mechanical indicators of the features of local foundation soil mass and the data of in situ testing was obtained. Based on massive quantities of exploration materials, this study analyzed engineering features, distribution status, and the feasibility of silty clay to be used as the bearing layer of the pile in Layer ④2 . The analytical results showed that the silty clay with the uniform depth of over 3.5m and the cone tip resistance in static sounding of over 400MPa could be used as bearing layer of the pile. This study could provide the reference for the accurate understanding of the engineering features of soil mass, and the design and evaluation of foundation in Jiaxing City.


2007 ◽  
Vol 44 (11) ◽  
pp. 1378-1390 ◽  
Author(s):  
C. Cherubini ◽  
G. Vessia

The evaluation of the pile–soil adhesion plays a fundamental role in the estimation of the side resistance for total stress analysis. Over the years, researchers have presented proposals for adhesion factor formulations even though only a few of them have shown a certain agreement in numerical and (or) methodological terms. Hence, several real-size experimental analyses have improved the understanding of the pile–soil adhesion phenomenon and mechanism. Nevertheless, the undrained shear strength (cu) values depend on the experimental technique employed. Such results force engineers to make a difficult choice among various formulations. A reliability analysis is performed in this paper to take into consideration the variations in formulations and values of the side resistance of bored piles in clayey soils. This study involves piles having different lengths and diameters, which are supposed to be bored in Matera clays. Such soil is characterized by means of laboratory investigation campaign, and its mechanical and stochastic main features are reported here. Values of reliability index β are calculated by means of the first-order reliability method.


Author(s):  
Jens Gibmeier ◽  
Martin Götting ◽  
Wolfgang Zinn ◽  
Berthold Scholtes
Keyword(s):  
X Ray ◽  

1998 ◽  
Vol 02 (02) ◽  
pp. 167-180 ◽  
Author(s):  
Tae-Hong Lim ◽  
Jung Hwa Hong

A one-dimensional poroelastic model of trabecular bone was developed to investigate the fluid effect on the mechanical behavior at the continuum level. The poroelastic properties were determined based upon an assumed drained Poisson's ratio of 0.3 and experimental results reported in the literature. Even though the free escape of the fluid through the loading end was allowed during deformation, model predictions showed that the pore pressure generated within trabecular bone would cause significant variations in total stress. The total stress increase resulted in a stiffening of trabecular bone, which supports the concept of hydraulic stiffening that has been advocated by several investigators. Model predictions showed a good agreement to the mechanical behaviors of trabecular bone specimens with marrow in situ in a uniaxial strain condition observed in previous studies. These results support the hypothesis that trabecular bone is poroelastic and the fluid effect on the mechanical behavior at the continnum level is significant. Thus, the incorporation of the fluid effect in future studies is recommended to improve our understanding of mechanical behavior of trabecular bone.


Sign in / Sign up

Export Citation Format

Share Document