Reinforced earth retaining walls under strip load

1973 ◽  
Vol 99 (10) ◽  
pp. 745-764
Author(s):  
Kenneth L. Lee ◽  
Bobby Dean Adams ◽  
Jean-Marie J. Vagneron

2011 ◽  
Vol 25 (5) ◽  
pp. 2198-2205 ◽  
Author(s):  
Albert de la Fuente ◽  
Antonio Aguado ◽  
Climent Molins ◽  
Jaume Armengou

2012 ◽  
Vol 256-259 ◽  
pp. 215-219
Author(s):  
Yu Liang Lin ◽  
Yi He Fang

Three new types of reinforced earth structures were introduced including reinforced gabion retaining wall, green reinforced gabion retaining wall and flexible wall face geogrid reinforced earth retaining wall. In order to study settlement behavior of these three retaining walls, lab tests were carried out. Cyclic loading-unloading of different levels (0~50kPa, 0~100kPa, 0~150kPa, 0~200kPa, 0~250kPa, 0~300kPa, 0~350kPa) were imposed. The settlement behaviors of retaining walls were analyzed, and secant modulus when loading and unloading was obtained. Results show that retaining walls present great elastic and plastic deformation, and plastic deformation is greater than elastic deformation. Secant modulus decreases with the increase of loading-unloading cycles under the same loading level. Unloading secant modulus is bigger than loading secant modulus in the same cycle. With the increase of loading level, both elastic and plastic deformation increase, and plastic deformation increases more quickly than elastic deformation.


Author(s):  
A. Bracegirdle

This paper describes a simplified seismic design approach proposed by the author (1979), based on limiting deformations. Limitations of the method are outlined and results of a simple computer programme presented. With further analysis, charts may be developed to provide a useful design tool.


Author(s):  
Imad A. Basheer ◽  
Yacoub M. Najjar

Reliability of an earth structure can be assessed from the knowledge of the governing probability distribution and its related statistical parameters, namely, the mean and variance. In this study, the mean and variance for the design parameters (width and length of the reinforcing ties) of reinforced earth retaining walls supporting sandy soils are determined using the first-order Taylor series approximation. Design diagrams that enable estimation of both mean and variance also are developed to avoid extensive computations that involve partial differentiation. Errors associated with truncating second-order terms are also evaluated. It is found that for soils with moderately variable physical parameters, the first-order approximation is adequate for estimating both the mean and variance.


2019 ◽  
Vol 295 ◽  
pp. 03001
Author(s):  
Hicham Alhajj Chehade ◽  
Marwan Sadek ◽  
Daniel Dias ◽  
Fadi Hage Chehade ◽  
Jenck Orianne

This paper concerns the optimization of sensors locations used to monitor the geosynthetic reinforcement internal forces of a reinforced earth retaining walls. The internal stability analysis of these structures is addressed through the kinematic theorem of limit analysis combined with the discretization technique to generate the failure surface. Knowing that the majority of damages of these structures are caused by the water presence in the reinforced zone, different water table levels are considered in the study and their effects on the critical failure surface location are analyzed.


Sign in / Sign up

Export Citation Format

Share Document