Influence of time dependent material behaviour on determination of rock mechanical parameters (in German)

2019 ◽  
Vol 29 (2) ◽  
pp. 273-279 ◽  
Author(s):  
Prapasiri Junthong ◽  
Supattra Khamrat ◽  
Suratwadee Sartkaew ◽  
Kittitep Fuenkajorn

1989 ◽  
Vol 79 (2) ◽  
pp. 493-499
Author(s):  
Stuart A. Sipkin

Abstract The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms 6.2) had a scalar moment of 2.3 × 1025 dyne-cm, a depth of 8 km, and a mechanism of strike 217°, dip 79°, rake 4°. The main shock (origin time 13:15:56.4, mb 6.0, Ms 6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 × 1026 dyne-cm, a depth of 10 km, and a mechanism of strike 303°, dip 89°, rake −180°.


Sign in / Sign up

Export Citation Format

Share Document