2D and 3D analogue modelling of extensional fault structures: templates for seismic interpretation

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ediar Usman ◽  
Wayan Lugra

Semenanjung Muria terletak di pantai utara Kabupaten Jepara, Provinsi Jawa Tengah. Daerah ini akan dikembangkan menjadi daerah tapak Pembangkit Listrik Tenaga Nuklir (PLTN). Secara geologi, di daerah ini berkembang berbagai fenomena geologi seperti struktur sesar, gunungapi dan kegempaan. Berdasarkan hasil interpretasi rekaman seismik pantul di perairan Semenanjung Muria menunjukkan adanya struktur sesar pada penampang Lintasan L-1 dan L-3. Struktur sesar tersebut terbentuk pada Sekuen B dan di bawah Sekuen A. Adanya struktur sesar di laut tersebut perlu mendapat perhatian dalam perencanaan tapak kontruksi PLTN Muria, sehingga aspek yang dapat membahayakan konstruksi dapat diperhitungkan sebelumnya terhadap perencanaan kekuatan dan stabilitas konstruksi. Kata kunci : sesar, seismik pantul, perencanaan konstruksi, Semenanjung Muria. Muria Peninsula is located at the north coast of Jepara District, Central Java Province. This area will be developed for the foundation of Nuclear Energy Electrics Powers Station. Geologically, the study area has some geological phenomena such as fault structures, earthquakes and volcanisms. Based on seismic interpretation the Muria Peninsula waters shows the occurence of faults on L-1 and L-3. The fault structure formed at Sequence B and under Sequence A as a Quaternary sediment. These faults are seemly the continuation of faults present on land. Therefore, the construction of Muria station should be considered regarding the occurrence of these faults especially in the planning of stability and strength of foundation. Keyword : faults, reflection seismic, planning of construction, Muria Peninsula.


2021 ◽  
pp. 1-26
Author(s):  
Fusheng Yu ◽  
Ruifeng Zhang ◽  
Jiafu Yu ◽  
Yidan Wang ◽  
Shuguang Chen ◽  
...  

Abstract The Linhe Depression is the largest tectonic unit in the Hetao Basin. The recently discovered commercial oil flow in the structural trap of wells JH2X and S5 has proved that the Meso-Cenozoic strata in the Linhe Depression have great exploration potential. Research on the kinematic model for the Mesozoic–Cenozoic Linhe Depression is important for analysing the geological conditions of hydrocarbon accumulation. In this study, field observations, seismic interpretation and scaled analogue modelling are performed. The results prove that the Linhe Depression experienced different stages of tectonic evolution, such as compressional depression (K1l), conversion from contraction to uniform subsidence (K1g), extensional rifting (E2–N2) and strike-slip deformation (Q), during the Mesozoic–Cenozoic eras. The kinematic model of negative inverted basins was first established with the early differential compression superimposed by the late extension. The seismic interpretation and analogue modelling results show that Jilantai Sag in the southern part of the Linhe Depression was subjected to compression from the Bayanwulashan fold–thrust belt on the NW side and the Helanshan fold–thrust belt on the SE side during Early Cretaceous time. Meanwhile, the Hanghou Sag in the northern part of the Linhe Depression was only compressed by the Langshan fold–thrust belt from the NW direction. The rifted structure generated by the extension from the SE direction during the Cenozoic Era resulted in the negative inversion of the pre-existing thrusts in different patterns. The intensity of negative inversion is controlled by several key factors, such as dip angle and the patterns of thrust faults, along with different basement textures. The morphological changes in the forebulge zone developed during Early Cretaceous time are responsible for the development of the segmented Central fault zones in the Hanghou Sag.


Author(s):  
P.M. Rice ◽  
MJ. Kim ◽  
R.W. Carpenter

Extrinsic gettering of Cu on near-surface dislocations in Si has been the topic of recent investigation. It was shown that the Cu precipitated hetergeneously on dislocations as Cu silicide along with voids, and also with a secondary planar precipitate of unknown composition. Here we report the results of investigations of the sense of the strain fields about the large (~100 nm) silicide precipitates, and further analysis of the small (~10-20 nm) planar precipitates.Numerous dark field images were analyzed in accordance with Ashby and Brown's criteria for determining the sense of the strain fields about precipitates. While the situation is complicated by the presence of dislocations and secondary precipitates, micrographs like those shown in Fig. 1(a) and 1(b) tend to show anomalously wide strain fields with the dark side on the side of negative g, indicating the strain fields about the silicide precipitates are vacancy in nature. This is in conflict with information reported on the η'' phase (the Cu silicide phase presumed to precipitate within the bulk) whose interstitial strain field is considered responsible for the interstitial Si atoms which cause the bounding dislocation to expand during star colony growth.


2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


Sign in / Sign up

Export Citation Format

Share Document