Dynamic strain response of lake and sea ice to moving loads

1985 ◽  
Vol 11 (2) ◽  
pp. 123-139 ◽  
Author(s):  
Vernon A. Squire ◽  
William H. Robinson ◽  
Timothy G. Haskell ◽  
Stuart C. Moore
2015 ◽  
Author(s):  
Javad Baqersad ◽  
Peyman Poozesh ◽  
Christopher Niezrecki ◽  
Peter Avitabile

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3853
Author(s):  
Shiang Xu ◽  
Shuangming Wang ◽  
Pingsong Zhang ◽  
Duoxing Yang ◽  
Binyang Sun

A rock fracture test is a very important method in the study of rock mechanics. Based on the Mechanics Test System (MTS), the dynamic strain response of the failure process of cylindrical granite specimens under uniaxial compression was observed by using distributed optical fiber strain sensors. Two groups of tests were designed and studied for rock sample fracturing. The main comparison and analysis were made between the distributed optical fiber testing technology and the MTS testing system in terms of the circumferential strain response curve and the evolution characteristics of strain with time. The strain characterization of distributed optical fiber in the process of rock fracturing was obtained. The results show that the ring strains measured by the distributed optical fiber sensor and the circumferential strain gauge were consistent, with a minimum ring strain error of 1.27%. The relationship between the strain jump or gradient band of the distributed optical fiber and the crack space on the sample surface is clear, which can reasonably determine the time of crack initiation and propagation, point out the location of the rock failure area, and provide precursory information about rock fracture. The distributed optical fiber strain sensor can realize the linear and continuous measurement of rock mass deformation, which can provide some reference for the study of macro damage evolution and the fracture instability prediction of field engineering rock mass.


1990 ◽  
Vol 18 (3) ◽  
pp. 337-342 ◽  
Author(s):  
P.J. Langhorne ◽  
W.H. Robinson ◽  
V.A. Squire

2019 ◽  
Vol 298 ◽  
pp. 111571 ◽  
Author(s):  
Hao Liu ◽  
Xiling Mao ◽  
Zhengbing Yang ◽  
Jinting Cui ◽  
Shuwen Jiang ◽  
...  

2011 ◽  
Vol 97-98 ◽  
pp. 40-44 ◽  
Author(s):  
Chuan Yi Zhuang ◽  
Ai Qin Shen ◽  
Lin Wang

In order to evaluate pavement dynamic responses accurately under truck loading, the full-scale asphalt pavement accelerated loading facility (ALF) was used. 10 strain gauges and 2 soil pressure cells were installed; temperature sensors were also installed in the different depth of the HMA layer. Pavement response was measured under real traffic load with ALF. The measured pavement responses are compared between the pavement sections to evaluate the effects of various experimental factors, such as axle load, speed, et al. Dynamic strain at the bottom of HMA layer and vertical compressive stress on the top of the subgrade were examined in the full-scale testing road, the regression models between dynamic response and axle load, dynamic response and speed were put forward respectively. Studies show that there is not only tensile strain but also compressive strain in the dynamic response, and the strain response is in the station of tension and compression alternation. Under the intermediate temperature, the strain response at the bottom of the asphalt layer is increased linearly with the increase of axle load and the vertical compressive stresses at the top of the subgrade is also increased with the increase of axle load. Speed has a great effect on strain response at the bottom of HMA layer, and has little effect on vertical compressive stress, it affects the loading duration of stress only. The destroy for the pavement by low speed and heavy load is more serious than that is normal.


Sign in / Sign up

Export Citation Format

Share Document