Static-dynamic strain response to the 2016 M6.2 Hutubi earthquake (eastern Tien Shan, NW China) recorded in a borehole strainmeter network

2019 ◽  
Vol 183 ◽  
pp. 103958
Author(s):  
Zheng Gong ◽  
Yan Jing ◽  
Haibing Li ◽  
Li Li ◽  
Xiaoyong Fan ◽  
...  
2015 ◽  
Author(s):  
Javad Baqersad ◽  
Peyman Poozesh ◽  
Christopher Niezrecki ◽  
Peter Avitabile

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3853
Author(s):  
Shiang Xu ◽  
Shuangming Wang ◽  
Pingsong Zhang ◽  
Duoxing Yang ◽  
Binyang Sun

A rock fracture test is a very important method in the study of rock mechanics. Based on the Mechanics Test System (MTS), the dynamic strain response of the failure process of cylindrical granite specimens under uniaxial compression was observed by using distributed optical fiber strain sensors. Two groups of tests were designed and studied for rock sample fracturing. The main comparison and analysis were made between the distributed optical fiber testing technology and the MTS testing system in terms of the circumferential strain response curve and the evolution characteristics of strain with time. The strain characterization of distributed optical fiber in the process of rock fracturing was obtained. The results show that the ring strains measured by the distributed optical fiber sensor and the circumferential strain gauge were consistent, with a minimum ring strain error of 1.27%. The relationship between the strain jump or gradient band of the distributed optical fiber and the crack space on the sample surface is clear, which can reasonably determine the time of crack initiation and propagation, point out the location of the rock failure area, and provide precursory information about rock fracture. The distributed optical fiber strain sensor can realize the linear and continuous measurement of rock mass deformation, which can provide some reference for the study of macro damage evolution and the fracture instability prediction of field engineering rock mass.


1985 ◽  
Vol 11 (2) ◽  
pp. 123-139 ◽  
Author(s):  
Vernon A. Squire ◽  
William H. Robinson ◽  
Timothy G. Haskell ◽  
Stuart C. Moore

2019 ◽  
Vol 298 ◽  
pp. 111571 ◽  
Author(s):  
Hao Liu ◽  
Xiling Mao ◽  
Zhengbing Yang ◽  
Jinting Cui ◽  
Shuwen Jiang ◽  
...  

2011 ◽  
Vol 97-98 ◽  
pp. 40-44 ◽  
Author(s):  
Chuan Yi Zhuang ◽  
Ai Qin Shen ◽  
Lin Wang

In order to evaluate pavement dynamic responses accurately under truck loading, the full-scale asphalt pavement accelerated loading facility (ALF) was used. 10 strain gauges and 2 soil pressure cells were installed; temperature sensors were also installed in the different depth of the HMA layer. Pavement response was measured under real traffic load with ALF. The measured pavement responses are compared between the pavement sections to evaluate the effects of various experimental factors, such as axle load, speed, et al. Dynamic strain at the bottom of HMA layer and vertical compressive stress on the top of the subgrade were examined in the full-scale testing road, the regression models between dynamic response and axle load, dynamic response and speed were put forward respectively. Studies show that there is not only tensile strain but also compressive strain in the dynamic response, and the strain response is in the station of tension and compression alternation. Under the intermediate temperature, the strain response at the bottom of the asphalt layer is increased linearly with the increase of axle load and the vertical compressive stresses at the top of the subgrade is also increased with the increase of axle load. Speed has a great effect on strain response at the bottom of HMA layer, and has little effect on vertical compressive stress, it affects the loading duration of stress only. The destroy for the pavement by low speed and heavy load is more serious than that is normal.


2020 ◽  
Author(s):  
Zheng Gong ◽  
Yan Jing ◽  
Haibing Li

<p>Strain caused by earthquakes give rise to many earthquake-related hydrological changes. Mechanisms responsible for them are different from place to place, depending on whether the trigger is the static strain or dynamic strain. Theoretic calculation indicates that the great difference in dependence on epicentral distance is robust enough to discriminate them, however, few studies based on direct strain measurements have tested this hypothesis. The 2016 M6.2 Hutubi Earthquake is a reverse event occurred in the northern Chinese Tien Shan, and the coseismic strain responses have been recorded by nine 4-component RZB borehole strainmeters at the distance from near field to far field. The nearest four stations have recorded resolvable static strain responses, and all stations have perfectly recorded the dynamic strain waves. Our result shows that the difference in the dependence on distance is truly reliable to differentiate static strains from dynamic strains, the static strain is of the same magnitude with the dynamic strain in the near field, and as the distance increase to intermediate and far field, the static strain are a few magnitude smaller. Yet the ratio between them is a complex index relating to the rupturing process itself, the tectonic background, and the seismic wave radiation pattern. Furthermore, the calibrated static strain were also used to relocate the fault plane through a grid-search method, and the result shows that the seismogenic fault is surprisingly a high-angle backthrust fault. The determined fault parameters are 279°/70°/87°, which are also consistent with the aftershock distribution. It indicates that the high-angle backthrust in the Chinese Tien Shan are capable of breaking individually. Considering the high vertical displacement, and their abundance inside the Tien Shan orogenic belt, the high-angle backthrust faults may had also played a significant role in building the modern ultra-high relief in Tien Shan.</p>


Sign in / Sign up

Export Citation Format

Share Document