The auto-correlation of the initial state population probability and quantum stochasticity in nonlinear systems

1983 ◽  
Vol 8 (1-2) ◽  
pp. 302
2019 ◽  
Vol 99 (1) ◽  
pp. 803-811 ◽  
Author(s):  
Boumediene Hamzi ◽  
Eyad H. Abed

AbstractThe paper studies an extension to nonlinear systems of a recently proposed approach to the definition of modal participation factors. A definition is given for local mode-in-state participation factors for smooth nonlinear autonomous systems. While the definition is general, the resulting measures depend on the assumed uncertainty law governing the system initial condition, as in the linear case. The work follows Hashlamoun et al. (IEEE Trans Autom Control 54(7):1439–1449 2009) in taking a mathematical expectation (or set-theoretic average) of a modal contribution measure over an uncertain set of system initial state. Poincaré linearization is used to replace the nonlinear system with a locally equivalent linear system. It is found that under a symmetry assumption on the distribution of the initial state, the tractable calculation and analytical formula for mode-in-state participation factors found for the linear case persists to the nonlinear setting. This paper is dedicated to the memory of Professor Ali H. Nayfeh.


Author(s):  
Zimian Lan

In this paper, we propose a new iterative learning control algorithm for sensor faults in nonlinear systems. The algorithm does not depend on the initial value of the system and is combined with the open-loop D-type iterative learning law. We design a period that shortens as the number of iterations increases. During this period, the controller corrects the state deviation, so that the system tracking error converges to the boundary unrelated to the initial state error, which is determined only by the system’s uncertainty and interference. Furthermore, based on the λ norm theory, the appropriate control gain is selected to suppress the tracking error caused by the sensor fault, and the uniform convergence of the control algorithm and the boundedness of the error are proved. The simulation results of the speed control of the injection molding machine system verify the effectiveness of the algorithm.


Author(s):  
Youssef Qaraai ◽  
Abdes Bernoussi

Protector control: Extension to a class of nonlinear distributed systemsWe present an extension of the protector control scheme introduced for the linear case in a previous work to a class of nonlinear systems. The systems considered are assumed to have a finite propagation velocity while the initial state is subject to a spreading disturbance. We characterize such a control first by using the remediability approach to the resulting nonlinear delay system, and then by coupling families of transformations and the delay approach. To illustrate this work, we provide a simulation example.


Sign in / Sign up

Export Citation Format

Share Document