Robust Discrete-Time Iterative Learning Control for Nonlinear Systems With Varying Initial State Shifts

2009 ◽  
Vol 54 (11) ◽  
pp. 2626-2631 ◽  
Author(s):  
Deyuan Meng ◽  
Yingmin Jia ◽  
Junping Du ◽  
Shiying Yuan
Author(s):  
Zimian Lan

In this paper, we propose a new iterative learning control algorithm for sensor faults in nonlinear systems. The algorithm does not depend on the initial value of the system and is combined with the open-loop D-type iterative learning law. We design a period that shortens as the number of iterations increases. During this period, the controller corrects the state deviation, so that the system tracking error converges to the boundary unrelated to the initial state error, which is determined only by the system’s uncertainty and interference. Furthermore, based on the λ norm theory, the appropriate control gain is selected to suppress the tracking error caused by the sensor fault, and the uniform convergence of the control algorithm and the boundedness of the error are proved. The simulation results of the speed control of the injection molding machine system verify the effectiveness of the algorithm.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Yun-Shan Wei ◽  
Qing-Yuan Xu

For linear discrete-time systems with randomly variable input trail length, a proportional- (P-) type iterative learning control (ILC) law is proposed. To tackle the randomly variable input trail length, a modified control input at the desirable trail length is introduced in the proposed ILC law. Under the assumption that the initial state fluctuates around the desired initial state with zero mean, the designed ILC scheme can drive the ILC tracking errors to zero at the desirable trail length in expectation sense. The designed ILC algorithm allows the trail length of control input which is different from system state and output at a specific iteration. In addition, the identical initial condition widely used in conventional ILC design is also mitigated. An example manifests the validity of the proposed ILC algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shangtai Jin ◽  
Zhongsheng Hou ◽  
Ronghu Chi

A data-driven predictive terminal iterative learning control (DDPTILC) approach is proposed for discrete-time nonlinear systems with terminal tracking tasks, where only the terminal output tracking error instead of entire output trajectory tracking error is available. The proposed DDPTILC scheme consists of an iterative learning control law, an iterative parameter estimation law, and an iterative parameter prediction law. If the partial derivative of the controlled system with respect to control input is bounded, then the proposed control approach guarantees the terminal tracking error convergence. Furthermore, the control performance is improved by using more information of predictive terminal outputs, which are predicted along the iteration axis and used to update the control law and estimation law. Rigorous analysis shows the monotonic convergence and bounded input and bounded output (BIBO) stability of the DDPTILC. In addition, extensive simulations are provided to show the applicability and effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document