Wind tunnel tests on scale models of a large power station chimney

1985 ◽  
Vol 18 (1) ◽  
pp. 75-90 ◽  
Author(s):  
J.P. Batham
2010 ◽  
Vol 98 (6-7) ◽  
pp. 353-362 ◽  
Author(s):  
Federico Cheli ◽  
Roberto Corradi ◽  
Daniele Rocchi ◽  
Gisella Tomasini ◽  
Emilio Maestrini

Author(s):  
F. Cheli ◽  
F. Fiocco ◽  
S. Giappino ◽  
G. Tomasini

Embankment is a typical layout for rail infrastructures and train aerodynamic coefficients in this scenario are necessary for the analysis of cross wind effects. Nevertheless wind tunnel tests on scale models with the embankment scenario presents difficulties in the reproduction of the boundary conditions, that is the simulation of a “pseudo-infinite” full scale embankment. To investigate this topic we have performed wind tunnel tests on an ETR500 1:45 scale model using a finite length embankment, with and without an upwind nose and a “pseudo-infinite” embankment, reproduced by the extension wall-to-wall of the scenario. The paper presents the tests results in terms of aerodynamic force coefficients and surface pressures. Guidelines for wind tunnel tests on embankment are than discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2021 ◽  
Vol 215 ◽  
pp. 104685
Author(s):  
An Miao ◽  
Li Shouying ◽  
Liu Zhiwen ◽  
Yan Banfu ◽  
Li Longan ◽  
...  

2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


2013 ◽  
Vol 361-363 ◽  
pp. 1105-1109
Author(s):  
Chun Sheng Shu

Liujiaxia Bridge is a truss stiffening girder suspension bridge which span is 536m, and it is the narrowest suspension bridge with the same scale, so the problems of flutter stability are prominent. Results of wind tunnel test show that its critical velocity cannot meet the requirements without any aerodynamic measures. Based on above considerations, seven kinds of aerodynamic measures are proposed, respectively wind tunnel tests are conducted. The results show that the program, in which the upper central stable board is 1.12m high and the under central stable board is 1.28m high, can meet the requirements. The results of this study provide some references to solving the problem of wind-resistant stability of narrow deck suspension bridge.


Sign in / Sign up

Export Citation Format

Share Document