Effect of bluff body wakes on skin friction and surface heat transfer in a turbulent boundary layer

1993 ◽  
Vol 49 (1-3) ◽  
pp. 269-278 ◽  
Author(s):  
V. Baskaran ◽  
P. Bradshaw
Author(s):  
D. R. Sabatino ◽  
C. R. Smith

The spatial-temporal flow-field and associated surface heat transfer within the leading edge, end-wall region of a bluff body were examined using both particle image velocimetry and thermochromic liquid crystal temperature measurements. The horseshoe vortex system in the end-wall region is mechanistically linked to the upstream boundary layer unsteadiness. Hairpin vortex packets, associated with turbulent boundary layer bursting behavior, amalgamate with the horseshoe vortex resulting in unsteady strengthening and streamwise motion. The horseshoe vortex unsteadiness exhibits two different natural frequencies: one associated with the transient motion of the horseshoe vortex, and the other with the transient surface heat transfer. Comparable unsteadiness occurs in the end-wall region of the more complex airfoil geometry of a linear turbine cascade. To directly compare the horseshoe vortex behavior around a turning airfoil to that of a simple bluff body, a length scale based on the maximum airfoil thickness is proposed.


2008 ◽  
Vol 612 ◽  
pp. 81-105 ◽  
Author(s):  
D. R. SABATINO ◽  
C. R. SMITH

The properties of artificially initiated turbulent spots over a heated plate were investigated in a water channel. The instantaneous velocity field and surface Stanton number were simultaneously established using a technique that combines particle image velocimetry and thermochromic liquid crystal thermography. Several characteristics of a spot are found to be similar to those of a turbulent boundary layer. The spacing of the surface heat transfer streak patterns within the middle or ‘body’ of a turbulent spot are comparable to the low-speed streak spacing within a turbulent boundary layer. Additionally, the surface shear stress in the same region of a spot is also found to be comparable to a turbulent boundary layer. However, despite these similarities, the heat transfer within the spot body is found to be markedly less than the heat transfer for a turbulent boundary layer. In fact, the highest surface heat transfer occurs at the trailing or calmed region of a turbulent spot, regardless of maturity. Using a modified set of similarity coordinates, instantaneous two-dimensional streamlines suggest that turbulent spots entrain and subsequently recirculate warm surface fluid, thereby reducing the effective heat transfer within the majority of the spot. It is proposed that energetic vortices next to the wall, near the trailing edge of the spot body, are able to generate the highest surface heat transfer because they have the nearest access to cooler free-stream fluid.


1984 ◽  
Vol 106 (3) ◽  
pp. 619-627 ◽  
Author(s):  
J. C. Simonich ◽  
R. J. Moffat

An experimental heat transfer study on a concavely curved turbulent boundary layer has been performed. A new, instantaneous heat transfer measurement technique utilizing liquid crystals was used to provide a vivid picture of the local distribution of surface heat transfer coefficient. Large scale wall traces, composed of streak patterns on the surface, were observed to appear and disappear at random, but there was no evidence of a spanwise stationary heat transfer distribution, nor any evidence of large scale structures resembling Taylor-Gortler vortices. The use of a two-dimensional computation scheme to predict heat transfer rates in concave curvature regions seems justifiable.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
D. R. Sabatino ◽  
C. R. Smith

The spatial-temporal flow field and associated surface heat transfer within the leading edge, end-wall region of a bluff body were examined using both particle image velocimetry and thermochromic liquid crystal temperature measurements. The horseshoe vortex system in the end-wall region is mechanistically linked to the upstream boundary layer unsteadiness. Hairpin vortex packets, associated with turbulent boundary layer bursting behavior, amalgamate with the horseshoe vortex resulting in unsteady strengthening and streamwise motion. The horseshoe vortex unsteadiness exhibits two different natural frequencies: one associated with the transient motion of the horseshoe vortex and the other with the transient surface heat transfer. Comparable unsteadiness occurs in the end-wall region of the more complex airfoil geometry of a linear turbine cascade. To directly compare the horseshoe vortex behavior around a turning airfoil to that of a simple bluff body, a length scale based on the maximum airfoil thickness is proposed.


Author(s):  
Rebecca Hollis ◽  
Jeffrey P. Bons

Two methods of flow control were designed to mitigate the effects of the horseshoe vortex structure (HV) at an airfoil/endwall junction. An experimental study was conducted to quantify the effects of localized boundary layer removal on surface heat transfer in a low-speed wind tunnel. A transient infrared technique was used to measure the convective heat transfer values along the surface surrounding the juncture. Particle image velocimetry was used to collect the time-mean velocity vectors of the flow field across three planes of interest. Boundary layer suction was applied through a thin slot cut into the leading edge of the airfoil at two locations. The first, referred to as Method 1, was directly along the endwall, the second, Method 2, was located at a height ∼1/3 of the approaching boundary layer height. Five suction rates were tested; 0%, 6.5%, 11%, 15% and 20% of the approaching boundary layer mass flow was removed at a constant rate. Both methods reduced the effects of the HV with increasing suction on the symmetry, 0.5-D and 1-D planes. Method 2 yielded a greater reduction in surface heat transfer but Method 1 outperformed Method 2 aerodynamically by completely removing the HV structure when 11% suction was applied. This method however produced other adverse effects such as high surface shear stress and localized areas of high heat transfer near the slot edges at high suction rates.


Author(s):  
Michael Sampson ◽  
Avery Fairbanks ◽  
Jacob Moseley ◽  
Phillip M. Ligrani ◽  
Hongzhou Xu ◽  
...  

Abstract Currently, there is a deficit of experimental data for surface heat transfer characteristics and thermal transport processes associated with tip gap flows, and a lack of understanding of performance and behavior of film cooling as applied to blade tip surfaces. As a result, many avenues of opportunity exist for development of creative tip configurations with innovative external cooling arrangements. Overall goals of the present investigations are to reduce cooling air requirements, and reduce thermal loading, with equivalent improvements of thermal protection and structural integrity. Described is the development of experimental facilities, including a Supersonic/Transonic Wind Tunnel and linear cascade, for investigations of surface heat transfer characteristics of transonic turbine blade tips with unique squealer geometries and innovative film cooling arrangements. Note that data from past investigations are used to illustrate some of the experimental procedures and approaches which will be employed within the investigation. Of interest is development of a two-dimensional linear cascade with appropriate cascade airfoil flow periodicity. Included are boundary layer flow bleed devices, downstream tailboards, and augmented cascade inlet turbulence intensity. The present linear cascade approach allows experimental configuration parameters to be readily varied. Tip gap magnitudes are scaled so that ratios of tip gap to inlet boundary layer thickness, ratios of tip gap to blade axial chord length, and ratios of tip gap magnitudes to blade true chord length match engine hardware configurations. Ratios of inlet boundary layer thickness to tip gap range from 3 to 5. Innovative film cooling configurations are utilized for one blade tip configuration, and scaled engine components are modelled and tested with complete external cooling arrangements. Blade tip and geometry characteristics are also considered, including squealer depth and squealer tip wall thickness. With these experimental components, results will be obtained with engine representative transonic Mach numbers, Reynolds numbers, and film cooling parameters, including density ratios, which are achieved using foreign gas injection with carbon dioxide. Transient, infrared thermography approaches will be employed to measure spatially-resolved distributions of surface heat transfer coefficients, adiabatic surface temperature, and adiabatic film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document