Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an integrated two- and three-dimensional source/vortex panel method

1995 ◽  
Vol 57 (1) ◽  
pp. 19-39 ◽  
Author(s):  
T.W. Chiu
2005 ◽  
Author(s):  
Paulo Henriques Iscold Andrade De Oliveira ◽  
Marcos Vinícius Bortolus

Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


2000 ◽  
Vol 2000 (188) ◽  
pp. 91-103 ◽  
Author(s):  
Jun Ando ◽  
Takashi Kanemaru ◽  
Kunihide Ohashi ◽  
Kuniharu Nakatake

1998 ◽  
Vol 42 (02) ◽  
pp. 113-119
Author(s):  
D. C. Kring

This study demonstrates that a bounded, physically relevant solution does exist at the so-called T = Uω/g = 1/4 resonance in the linear seakeeping problem for a realistic ship with forward speed, U, frequency of encounter, ω, and gravitational acceleration, g. The solution of the seakeeping problem by a linear, three dimensional, time-domain Rankine panel method, validated through numerical analysis, testing, and comparison to physical experiments, supports this claim. The solution can also be obtained with equal validity through frequencies both above and below the critical frequency.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Israa Alesbe ◽  
Moustafa Abdel-Maksoud ◽  
Sattar Aljabair

Analyses of the unsteady flow behaviour of a 5 MW horizontal-axis wind turbine (HAWT) rotor (Case I) and a rotor with tower (Case II) are carried out using a panel method and a RANSE method. The panel method calculations are obtained by applying the in-house boundary element method (BEM) panMARE code, which is based on the potential flow theory. The BEM is a three-dimensional first-order panel method which can be used for investigating various steady and unsteady flow problems. Viscous flow simulations are carried out by using the RANSE solver ANSYS CFX 14.5. The results of Case I allow for the calculation of the global integral values of the torque and the thrust and include detailed information on the local flow field, such as the pressure distribution on the blade sections and the streamlines. The calculated pressure distribution by the BEM is compared with the corresponding values obtained by the RANSE solver. The tower geometry is considered in the simulation in Case II, so the unsteady forces due to the interaction between the tower and the rotor blades can be calculated. The application of viscous and inviscid flow methods to predict the forces on the HAWT allows for the evaluation of the viscous effects on the calculated HAWT flows.


2020 ◽  
Vol 11 (4) ◽  
pp. 1045-1055 ◽  
Author(s):  
N. Neuert ◽  
D. Dinkler

Abstract The aeroelastic behaviour of a wing with an over-the-wing pylon-mounted ultra-high bypass ratio engine and high-lift devices is studied with a reduced-order model. Wing, pylon and engine structures are reduced separately using the modal approach and described by their natural frequencies and modes. The characteristic aerodynamic loads are investigated with steady and unsteady flow simulations of a two-dimensional profile section. These results indicate possible heave instabilities at strongly negative angles of attack. Three-dimensional effects are taken into account using an adapted lifting line theory according to Prandtl. Due to high circulations resulting from the high-lift systems, the effective angles of attack are in the range of the potential instabilities. The substructures and aerodynamic loads are coupled in modal space. For the wing without three-dimensional effects, the bending instability occurs at the corresponding negative angles of attack. Even though there is potential for improvement, including the three-dimensional effects shifts the endagered area to possible operation points.


Sign in / Sign up

Export Citation Format

Share Document