Stress-strain properties of structural steel at strain rates of up to 105 per second at sub-zero, room and high temperatures

1984 ◽  
Vol 3 (3) ◽  
pp. 245-256 ◽  
Author(s):  
M.M. Haque ◽  
M.S.J. Hashmi
Author(s):  
Z. Abbasi ◽  
R. Ebrahimi

: The hot deformation response of a new dilute Mg alloy was investigated by means of a series of hot compression tests in the temperature and strain rate range of 375-450°C and 0.001-1 s-1 , respectively. The stress-strain behavior, microstructure evolution and processing parameters optimization were studied carefully. Micro-structural characterization studies conducted on a series of deformed samples using optical microscopy revealed that during hot deformation, the main restoration mechanism was dynamic recrystallization (DRX). In the final microstructure of the material, grain boundaries were thoroughly covered by layers of fine DRXed grains. Moreover, a strong twinning induced necklace structure was the most significant characteristic at high strain rates which was accompanied by smaller grain size in the domain material. Based on the measured stress-strain data, constitutive model was conducted on two regimes of low and high temperatures. Moreover, the processing map of the studied material was obtained and interpreted using dynamic material model (DMM). The processing map was built and divided into a feasible domain at high temperatures in the whole range of strain rates and two separated instable domains in the temperature range of 375 to 435°C at high and low strain rates of 1 and 0.001s-1 .


2021 ◽  
Author(s):  
SAGAR M. DOSHI, SAGAR M. DOSHI, ◽  
NITHINKUMAR MANOHARAN ◽  
BAZLE Z. (GAMA) HAQUE, ◽  
JOSEPH DEITZEL ◽  
JOHN W. GILLESPIE, JR.

Epoxy resin-based composite panels used for armors may be subjected to a wide range of operating temperatures (-55°C to 76°C) and high strain rates on the order of 103-104 s-1. Over the life cycle, various environmental factors also affect the resin properties and hence influence the performance of the composites. Therefore, it is critical to determine the stress-strain behavior of the epoxy resin over a wide range of strain rates and temperatures for accurate multi-scale modeling of composites and to investigate the influence of environmental aging on the resin properties. Additionally, the characterization of key mechanical properties such as yield stress, modulus, and energy absorption (i.e. area under the stress-strain curve) at varying temperatures and moisture can provide critical data to calculate the material operating limits. In this study, we characterize mechanical properties of neat epoxy resin, SC-15 (currently used in structural armor) and RDL-RDC using uniaxial compression testing. RDL-RDC, developed by Huntsman Corporation, has a glass transition temperature of ~ 120°C, compared to ~ 85°C of SC-15. A split Hopkinson pressure bar is used for high strain rate testing. Quasistatic testing is conducted using a screw-driven testing machine (Instron 4484) at 10-3 s-1 and 10-1 s-1 strain rates and varying temperatures. The yield stress is fit to a modified Eyring model over the varying strain rates at room temperature. For rapid investigation of resistance to environmental aging, accelerated aging tests are conducted by immersing the specimens in 100°C water for 48 hours. Specimens are conditioned in an environmental chamber at 76 °C and 88% RH until they reach equilibrium. Tests are then conducted at five different temperatures from 0°C to 95°C, and key mechanical properties are then plotted vs. temperature. The results presented are an important step towards developing a methodology to identify environmental operating conditions for composite ground vehicle applications.


1970 ◽  
Vol 10 (9) ◽  
pp. 370-376 ◽  
Author(s):  
C. K. H. Dharan ◽  
F. E. Hauser

2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


1970 ◽  
Vol 185 (1) ◽  
pp. 1149-1158 ◽  
Author(s):  
K. Bitans ◽  
P. W. Whitton

Shear stress-shear strain curves for o.f.h.c. copper at room temperature have been obtained at constant shear strain rates in the range 1 to 103s-1, using thin walled tubular specimens in a flywheel type torsion testing machine. Results show that, for a given value of strain, the stress decreases when the rate of strain is increased. Moreover, the elastic portion of the stress-strain curve tends to disappear as the rate of strain is increased. It is postulated that these effects are due to the formation of adiabatic shear bands in the material when the given rate of strain is impressed rapidly enough. A special feature of the design of the testing machine used is the rapid application of the chosen strain rate.


Sign in / Sign up

Export Citation Format

Share Document