Stress-Strain Curves for Oxygen-Free High Conductivity Copper at Shear Strain Rates of up to 103s-1

1970 ◽  
Vol 185 (1) ◽  
pp. 1149-1158 ◽  
Author(s):  
K. Bitans ◽  
P. W. Whitton

Shear stress-shear strain curves for o.f.h.c. copper at room temperature have been obtained at constant shear strain rates in the range 1 to 103s-1, using thin walled tubular specimens in a flywheel type torsion testing machine. Results show that, for a given value of strain, the stress decreases when the rate of strain is increased. Moreover, the elastic portion of the stress-strain curve tends to disappear as the rate of strain is increased. It is postulated that these effects are due to the formation of adiabatic shear bands in the material when the given rate of strain is impressed rapidly enough. A special feature of the design of the testing machine used is the rapid application of the chosen strain rate.

2014 ◽  
Vol 887-888 ◽  
pp. 1032-1035 ◽  
Author(s):  
Chang Chun Di ◽  
Kai Bo Cui ◽  
Jun Qi Qin ◽  
Da Lin Wu

Aluminum brass HAL66-6-3-2 is abrasion-resistant alloy with high strength, hardness and wear resistance, corrosion resistance is also well, commonly used in the field of marine and ordnance industry. The quasi static and dynamic mechanical properties were tested through the use of electronic universal testing machine and Split Hopkinson Tension Bar (SHTB). Meanwhile, the material stress-strain curve at different temperatures and different strain rates is also obtained. Based on Johnson-Cook constitutive model, using the method of least squares fitting the experimental data to determine the model parameters, fitting and experimental results agree well.


1993 ◽  
Vol 28 (2) ◽  
pp. 125-133 ◽  
Author(s):  
A Navarro ◽  
M W Brown ◽  
K J Miller

A simplified treatment is presented for the analysis of tubular specimens subject to in-phase tension-torsion loads in the elasto-plastic regime. Use is made of a hardening function readily obtainable from the uniaxial cyclic stress-strain curve and hysteresis loops. Expressions are given for incremental as well as deformation theories of plasticity. The reversals of loading are modelled by referring the flow equations to the point of reversal and calculating distances from the point of reversal using a yield critertion. The method has been used to predict the deformation response of in-phase tests on an En15R steel, and comparisons with experimental data are provided. The material exhibited a non-Masing type behaviour. A power law rule is developed for predicting multiaxial cyclic response from uniaxial data by incorporating a hysteretic strain hardening exponent.


2007 ◽  
Vol 558-559 ◽  
pp. 441-448 ◽  
Author(s):  
Jong K. Lee

During hot working, deformation of metals such as copper or austenitic steels involves features of both diffusional flow and dislocation motion. As such, the true stress-true strain relationship depends on the strain rate. At low strain rates (or high temperatures), the stress-strain curve displays an oscillatory behavior with multiple peaks. As the strain rate increases (or as the temperature is reduced), the number of peaks on the stress-strain curve decreases, and at high strain rates, the stress rises to a single peak before settling at a steady-state value. It is understood that dynamic recovery is responsible for the stress-strain behavior with zero or a single peak, whereas dynamic recrystallization causes the oscillatory nature. In the past, most predictive models are based on either modified Johnson-Mehl-Avrami kinetic equations or probabilistic approaches. In this work, a delay differential equation is utilized for modeling such a stress-strain behavior. The approach takes into account for a delay time due to diffusion, which is expressed as the critical strain for nucleation for recrystallization. The solution shows that the oscillatory nature depends on the ratio of the critical strain for nucleation to the critical strain for completion for recrystallization. As the strain ratio increases, the stress-strain curve changes from a monotonic rise to a single peak, then to a multiple peak behavior. The model also predicts transient flow curves resulting from strain rate changes.


1937 ◽  
Vol 135 (1) ◽  
pp. 467-483
Author(s):  
R. J. Lean ◽  
H. Quinney

The paper contains an account of a research into the effect on metals of different speeds of fracture, using a specially designed high-speed testing machine which is described in detail. The experiments were conducted both in this machine and in a 5-ton variable-speed autographic tensile machine, on five steels, the rate of loading being varied for each. With the high-speed machine toughness, ductility, time to produce fracture, and the stress-strain curve were obtained. The results of these combined tests, given in tables and graphs, show that there is a marked increase in stress due to higher speed of testing; and also that the work required to cause fracture increases with the speed. For mild steel the stress at the initial yield point was found to be in excess of that at the maximum point, when the speed of testing was increased the ductility did not appear to suffer.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Y. W. Kwon ◽  
Y. Esmaeili ◽  
C. M. Park

Because most structures are subjected to transient strain-rate loading, an experimental study was conducted to investigate the stress-strain behaviors of an aluminum alloy undergoing varying strain-rate loading. To this end, uniaxial tensile loading was applied to coupons of dog-bone shape such that each coupon underwent two or three different strain-rates, i.e., one rate after another. As a basis, a series of single-strain-rate tests was also conducted with strain-rates of 0.1–10.0 s−1. When the material experienced multistrain-rate loading, the stress-strain curves were significantly different from any single-strain-rate stress-strain curve. The strain-rate history affected the stress-strain curves under multistrain-rate loading. As a result, some simple averaging of single-strain-rate curves did not predict the actual multistrain-rate stress-strain curve properly. Furthermore, the fracture strain under multistrain-rate loading was significantly different from that under any single-strain-rate case. Depending on the applied strain-rates and their sequences, the former was much greater or less than the latter. A technique was proposed based on the residual plastic strain and plastic energy density in order to predict the fracture strain under multistrain-rate loading. The predicted fracture strains generally agreed well with the experimental data. Another observation that was made was that the unloading stress-strain curve was not affected by the previous strain-rate history.


1987 ◽  
Vol 65 (9) ◽  
pp. 1878-1883 ◽  
Author(s):  
M. H. Sherebrin ◽  
H. A. Bernans ◽  
Margot R. Roach

Some degree of calcification was noted in more than half of the 59 aortas of individuals aged from 15 to 88 we have examined at autopsy. The calcification, which is determined by x-raying the opened and flat aorta, is in patches. We have studied the influence of calcification on stress versus strain, breaking strength, and modulus of elasticity of strips of aorta to determine its importance in vascular disease. Strips of aortic wall 5 × 30 mm were cut with orientation parallel or perpendicular to the vessel axis. Elongation versus load was measured with an Instron tensile testing machine. The true stress and true strain were calculated for both calcified and uncalcified strips from the thoracic and abdominal regions in both orientations. From the stress–strain curve the following values were selected: strain, stress, and slope at 80 mmHg equivalent pressure (1 mmHg = 133.3 Pa); maximum stress, strain, and slope; and breaking stress, strain, and slope if the sample broke. There were statistically significant differences in 13 of the 36 categories between calcified and uncalcified strips. The breaking strength and strain is lower in the calcified strips. The stress–strain curve for the uncalcified strip was mathematically transformed by reducing the amount of elongation so that the curve coincided with that of the calcified strip for eight matched pairs from the same individuals. The calcification appears to immobilize part of the strip, probably causing the boundary of the calcified tissue to be a region of high stress where tissue breakdown can occur.


2011 ◽  
Vol 264-265 ◽  
pp. 862-870
Author(s):  
G.H. Majzoobi ◽  
S. Faraj Zadeh Khosroshahi ◽  
H. Beik Mohammadloo

Identification of the constants of material models is always a concern. In the present work, a combined experimental, numerical and optimization technique is employed to determine the constants of Zerilli-Armstrong model. The experiments are conducted on a compressive Hopkinson bar, the simulations are performed using finite element method and optimization is carried out using genetic algorithm. In the method adopted here, there is no need for experimental stress-strain curve which is always accompanied by restricting phenomenon such as necking in tension and bulging in compression. Instead of stress-strain curve, the difference between the post-deformation profiles of specimens obtained from experiment and the numerical simulations is adopted as the objective function for optimization purposes. The results suggest that the approach introduced in this work can substitute costly instrumentations normally needed for obtaining stress-strain curves at high strain rates and elevated temperature.


Author(s):  
Kok Ee Tan ◽  
John H. L. Pang

In this paper, the strain-rate dependent mechanical properties and stress-strain curve behavior of Sn3.8Ag0.7Cu (SAC387) solder is presented for a range of strain-rates at room temperature. The apparent elastic modulus, yield stress properties and stress-strain curve equation of the solder material is needed to facilitate finite element modeling work. Tensile tests on dog-bone shaped bulk solder specimens were conducted using a non-contact video extensometer system. Constant strain-rate uni-axial tensile tests were conducted over the strain-rates of 0.001, 0.01, 0.1 and 1 (s−1) at 25°C. The effects of strain-rate on the stress-strain behavior for lead-free Sn3.8Ag0.7Cu solder are presented. The tensile yield stress results were compared to equivalent yield stress values derived from nano-indentation hardness test results. Constitutive models based on the Ramberg-Osgood model and the Cowper-Symond model were fitted for the tensile test results to describe the elastic-plastic behavior of solder deformation behavior.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 52-60
Author(s):  
Luis Miguel Zabala Gualtero ◽  
Ulises Figueroa López ◽  
Andrea Guevara Morales ◽  
Alejandro Rojo Valerio

Simulations of impact events in the automotive industry are now common practice. Vehicle crashworthiness simulations on plastic components cover a wide range of strain rates from 0.01 to 500 s-1. Because plastics mechanical properties are very dependent on strain rate, developing experimental methods for generating stress-strain curves at this strain rate range is of great technological importance. In this paper, a modified Charpy machine capable of acquiring useful information to obtain the stress-strain curve is presented. Strain rates between 300 to 400 s-1 were achieved. Three thermoplastics were tested: high-density polyethylene, polypropylene-copolymer and polypropylene-homopolymer. Impact simulations using LS-DYNA were performed using the acquired high-strain rates stress-strain curves and compared with experimental data. Simulations using stress-strain curves from quasi-static tests were also performed for comparison. Very good agreement between the simulation and experimental results was found when the ASTM D1822 type S specimen was used for testing each material.


Sign in / Sign up

Export Citation Format

Share Document