Optimal H∞ model reduction via linear matrix inequalities: continuous- and discrete-time cases

1995 ◽  
Vol 26 (5) ◽  
pp. 321-333 ◽  
Author(s):  
Karolos M. Grigoriadis
2007 ◽  
Vol 49 (1) ◽  
pp. 111-129 ◽  
Author(s):  
Shuping Ma ◽  
Xinzhi Liu ◽  
Chenghui Zhang

This paper discusses robust stochastic stability and stabilization of time-delay discrete Markovian jump singular systems with parameter uncertainties. Based on the restricted system equivalent (RES) transformation, a delay-dependent linear matrix inequalities condition for time-delay discrete-time Markovian jump singular systems to be regular, causal and stochastically stable is established. With this condition, problems of robust stochastic stability and stabilization are solved, and delay-dependent linear matrix inequalities are obtained. A numerical example is also given to illustrate the effectiveness of this method.2000Mathematics subject classification: primary 39A12; secondary 93C55.


2021 ◽  
Vol 297 ◽  
pp. 01035
Author(s):  
Rachid Naoual ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper deals with the problem of H∞ model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H∞ model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H∞ model reduction design, a numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document