The cellulose-binding domains of cellulases: tools for biotechnology

1989 ◽  
Vol 7 (9) ◽  
pp. 239-243 ◽  
Author(s):  
E ONG
1999 ◽  
Vol 342 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Jaitinder GILL ◽  
Jane E. RIXON ◽  
David N. BOLAM ◽  
Simon MCQUEEN-MASON ◽  
Peter J. SIMPSON ◽  
...  

Xylanase A (Pf Xyn10A), in common with several other Pseudomonas fluorescens subsp. cellulosa polysaccharidases, consists of a Type II cellulose-binding domain (CBD), a catalytic domain (Pf Xyn10ACD) and an internal domain that exhibits homology to Type X CBDs. The Type X CBD of Pf Xyn10A, expressed as a discrete entity (CBDX) or fused to the catalytic domain (Pf Xyn10A′), bound to amorphous and bacterial microcrystalline cellulose with a Ka of 2.5×105 M-1. CBDX exhibited no affinity for soluble forms of cellulose or cello-oligosaccharides, suggesting that the domain interacts with multiple cellulose chains in the insoluble forms of the polysaccharide. Pf Xyn10A′ was 2-3 times more active against cellulose-hemicellulose complexes than Pf Xyn10ACD; however, Pf Xyn10A′ and Pf Xyn10ACD exhibited the same activity against soluble substrates. CBDX did not disrupt the structure of plant-cell-wall material or bacterial microcrystalline cellulose, and did not potentiate Pf Xyn10ACD when not covalently linked to the enzyme. There was no substantial difference in the affinity of full-length Pf Xyn10A and the enzyme's Type II CBD for cellulose. The activity of Pf Xyn10A against cellulose-hemicellulose complexes was similar to that of Pf Xyn10A′, and a derivative of Pf Xyn10A in which the Type II CBD is linked to the Pf Xyn10ACD via a serine-rich linker sequence [Bolam, Cireula, McQueen-Mason, Simpson, Williamson, Rixon, Boraston, Hazlewood and Gilbert (1998) Biochem J. 331, 775-781]. These data indicate that CBDX is functional in Pf Xyn10A and that no synergy, either in ligand binding or in the potentiation of catalysis, is evident between the Type II and X CBDs of the xylanase.


2001 ◽  
Vol 67 (10) ◽  
pp. 4678-4684 ◽  
Author(s):  
Henrik Wernérus ◽  
Janne Lehtiö ◽  
Tuula Teeri ◽  
Per-Åke Nygren ◽  
Stefan Ståhl

ABSTRACT Ni2+-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reeseicellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni2+-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni2+-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed.


Author(s):  
H. Pala ◽  
R. Pinto ◽  
M. Mota ◽  
A. P. Duarte ◽  
F. M. Gama

2009 ◽  
Author(s):  
Jing Guo ◽  
Ming Tien ◽  
Jeffrey M Catchmark

1998 ◽  
Vol 49 (5) ◽  
pp. 552-559 ◽  
Author(s):  
C. M. G. A. Fontes ◽  
J. H. Clarke ◽  
G. P. Hazlewood ◽  
T. H. Fernandes ◽  
H. J. Gilbert ◽  
...  

1991 ◽  
Vol 279 (3) ◽  
pp. 787-792 ◽  
Author(s):  
D M Poole ◽  
A J Durrant ◽  
G P Hazlewood ◽  
H J Gilbert

The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. cellulosa, which also constitutes a CBD, fused to the N-terminus of endoglucanase A (EGA) from Ruminococcus albus. The three hybrid enzymes bound to insoluble cellulose, and could be eluted such that cellulose-binding capacity and catalytic activity were retained. The catalytic properties of the fusion enzymes were similar to EGE' and EGA respectively. Residues 37-347 and 34-347 of XYLC were fused to the C-terminus of EGE' and the 10 amino acids encoded by the multiple cloning sequence of pMTL22p respectively. The two hybrid proteins did not bind cellulose, although residues 39-139 of XYLC were shown previously to constitute a functional CBD. The putative role of the P. fluorescens subsp. cellulosa CBD in cellulase action is discussed.


Sign in / Sign up

Export Citation Format

Share Document