An adaptive dominant point detection algorithm for digital curves

1993 ◽  
Vol 14 (5) ◽  
pp. 385-390 ◽  
Author(s):  
Mohan S. Kankanhalli
1998 ◽  
Vol 31 (6) ◽  
pp. 791-804 ◽  
Author(s):  
A. Garrido ◽  
N. Pérez de la blanca ◽  
M. Garcia-Silvente

2018 ◽  
Vol 8 ◽  
Author(s):  
Nathan Gold ◽  
Martin G. Frasch ◽  
Christophe L. Herry ◽  
Bryan S. Richardson ◽  
Xiaogang Wang

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1089
Author(s):  
Tae Wuk Bae ◽  
Kee Koo Kwon ◽  
Kyu Hyung Kim

An important function in the future healthcare system involves measuring a patient’s vital signs, transmitting the measured vital signs to a smart device or a management server, analyzing it in real-time, and informing the patient or medical staff. Internet of Medical Things (IoMT) incorporates information technology (IT) into patient monitoring device (PMD) and is developing traditional measurement devices into healthcare information systems. In the study, a portable ubiquitous-Vital (u-Vital) system is developed and consists of a Vital Block (VB), a small PMD, and Vital Sign Server (VSS), which stores and manages measured vital signs. Specifically, VBs collect a patient’s electrocardiogram (ECG), blood oxygen saturation (SpO2), non-invasive blood pressure (NiBP), body temperature (BT) in real-time, and the collected vital signs are transmitted to a VSS via wireless protocols such as WiFi and Bluetooth. Additionally, an efficient R-point detection algorithm was also proposed for real-time processing and long-term ECG analysis. Experiments demonstrated the effectiveness of measurement, transmission, and analysis of vital signs in the proposed portable u-Vital system.


Sign in / Sign up

Export Citation Format

Share Document