Spatio-temporal prediction of snow water equivalent using the Kalman filter

1996 ◽  
Vol 22 (2) ◽  
pp. 159-175 ◽  
Author(s):  
Hsin-Cheng Huang ◽  
Noel Cressie
2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2020 ◽  
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
Emmanuel Cosme ◽  
Clément Albergel ◽  
Louis-François Meunier ◽  
...  

Abstract. Monitoring the evolution of the snowpack properties in mountainous areas is crucial for avalanche hazard forecasting and water resources management. In-situ and remotely sensed observations provide precious information on the snowpack but usually offer a limited spatio-temporal coverage of bulk or surface variables only. In particular, visible-near infrared (VIS-NIR) reflectance observations can inform on the snowpack surface properties but are limited by terrain shading and clouds. Snowpack modelling enables to estimate any physical variable, virtually anywhere, but is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of information, and to propagate information from observed areas to non observed areas. Here, we present CrocO, (Crocus-Observations) an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow (HS) and VIS-NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties, and a Particle Filter (PF) to reduce them. The PF is known to collapse when assimilating a too large number of observations. Two variants of the PF were specifically implemented to ensure that observations information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Experiments are carried out in a twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available in only a 1/6th of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improvement of snow water equivalent Continuous Rank Probability Score (CRPS) of 60 % when assimilating HS with a 40-member ensemble, and an average 20 % CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant improvements are also obtained outside the observation domain. These promising results open a way for the assimilation of real observations of reflectance, or of any snowpack observations in a spatialised context.


2016 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F.P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However this provides no information on the actual amount of water stored in a snowpack i.e. the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ meteorological observations and a modified version of the seNorge snow model to estimate climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Landsat 8 and MOD10A2 snow cover maps were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 % and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an Ensemble Kalman filter. The approach of modelling snow depth in a Kalman filter framework allows for data-constrained estimation of SWE rather than snow cover alone and this has great potential for future studies in the Himalayas. Climate sensitivity tests with the optimized snow model show a strong decrease in SWE in the valley with increasing temperature. However, at high elevation a decrease in SWE is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature. Finally the climate sensitivity study revealed that snowmelt runoff increases in winter and early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature.


2010 ◽  
Vol 4 (1) ◽  
pp. 1-30 ◽  
Author(s):  
T. Grünewald ◽  
M. Schirmer ◽  
R. Mott ◽  
M. Lehning

Abstract. The spatio-temporal variability of the mountain snow cover determines the avalanche danger, snow water storage, permafrost distribution and the local distribution of fauna and flora. Using a new type of terrestrial laser scanner (TLS), which is particularly suited for measurements of snow covered surfaces, snow depth, snow water equivalent (SWE) and melt rates have been monitored in a high alpine catchment during an ablation period. This allowed for the first time to get a high resolution (2.5 m cell size) picture of spatial variability and its temporal development. A very high variability in which maximum snow depths between 0–9 m at the end of the accumulation season was found. This variability decreased during the ablation phase, although the dominant snow deposition features remained intact. The spatial patterns of calculated SWE were found to be similar to snow depth. Average daily melt rate was between 15 mm/d at the beginning of the ablation period and 30 mm/d at the end. The spatial variation of melt rates increased during the ablation rate and could not be explained in a simple manner by geographical or meteorological parameters, which suggests significant lateral energy fluxes contributing to observed melt. It could be qualitatively shown that the effect of the lateral energy transport must increase as the fraction of snow free surfaces increases during the ablation period.


2021 ◽  
Vol 14 (3) ◽  
pp. 1595-1614
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
Emmanuel Cosme ◽  
Clément Albergel ◽  
Louis-François Meunier ◽  
...  

Abstract. Monitoring the evolution of snowpack properties in mountainous areas is crucial for avalanche hazard forecasting and water resources management. In situ and remotely sensed observations provide precious information on the state of the snowpack but usually offer limited spatio-temporal coverage of bulk or surface variables only. In particular, visible–near-infrared (Vis–NIR) reflectance observations can provide information about the snowpack surface properties but are limited by terrain shading and clouds. Snowpack modelling enables the estimation of any physical variable virtually anywhere, but it is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of information and to propagate information from observed areas to non-observed areas. Here, we present CrocO (Crocus-Observations), an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow (HS) and Vis–NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties and a particle filter (PF) to reduce them. The PF is prone to collapse when assimilating too many observations. Two variants of the PF were specifically implemented to ensure that observational information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Feasibility testing experiments are carried out in an identical twin experiment setup, with synthetic observations of HS and Vis–NIR reflectances available in only one-sixth of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improvement of the snow water equivalent continuous rank probability score (CRPS) of 60 % when assimilating HS with a 40-member ensemble and an average 20 % CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant improvements are also obtained outside the observation domain. These promising results open a possibility for the assimilation of real observations of reflectance or of any snowpack observations in a spatialised context.


2017 ◽  
Author(s):  
Dominik Schneider ◽  
Noah P. Molotch ◽  
Jeffrey S. Deems

Abstract. A new spatio-temporal dataset from the ongoing Airborne Snow Observatory (ASO) provides an unprecedented look at the spatial and temporal patterns of snow water equivalent (SWE) over multiple years in the Tuolumne Basin, California, USA. We found that fractional snow covered area (fSCA) significantly improves our ability to model the distribution of SWE based on relationships between SWE, fSCA, and topography. Further, the broad availability of satellite images of fSCA facilitates the transfer of these relationship to different years with minimal degradation in performance (r2 = 0.85, % MAE = 33 %, % Bias = 1 %) compared with models fit on the same day, by considering variations in SWE depth as expressed by differences in fSCA between years. The crux of this proposition is in selecting the model to transfer. We offer a method with which to select a model from another year based on the similarity in SWE distribution at existing snow pillows in the area. Comparison of the best transferred predictions and the selected predictions results in a mild decrease in r2 (0.02) and moderate increases in % MAE (15 %) and % Bias (10 %). The results motivate further refinement in the technique used to select the best model because if these dates can be identified then SWE can be modeled at accuracy levels equivalent to models generated from ASO data collected on the day of interest. Lastly, we found that models from ASO observations of anomalously low snowpacks in 2015 still transferred to other years, although the same cannot be said for the reverse. This research provides a first attempt at extending the value of ASO beyond the observations and we expect ASO will continue to provide insights for improving water resource management for years to come.


2019 ◽  
Author(s):  
Joel Fiddes ◽  
Kristoffer Aalstad ◽  
Sebastian Westermann

Abstract. Spatial variability in high-relief landscapes is immense, and grid-based models cannot be run at spatial resolutions to explicitly represent important physical processes. This hampers the assessment of the current and future evolution of important issues such as water availability or mass movement hazards. Here, we present a new processing chain that couples an efficient subgrid method with a downscaling tool and data assimilation method with the purpose to improve numerical simulation of surface processes at multiple spatial and temporal scales in ungauged basins. The novelty of the approach is that while we add 1–2 orders of magnitude of computational cost by ensemble simulations, we save 4–5 orders of magnitude over explicitly simulating a high-resolution grid. This approach makes data assimilation at large spatio-temporal scales feasible. In addition, this approach utilises only freely available global datasets and is therefore able to run globally. We demonstrate marked improvements in estimating snow height and snow water equivalent at various experimental scales using this approach. We propose this as a suitable method for a wide variety of operational and research applications where surface models need to be run at large scales with sparse to non-existent ground observations and with the flexibility to assimilate diverse variables retrieved by EO missions.


Sign in / Sign up

Export Citation Format

Share Document