modelling uncertainties
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 5)

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 60
Author(s):  
Claire Brereton ◽  
Matteo Pedercini

Background: The UK was one of the countries worst affected by the COVID-19 pandemic in Europe. A strict lockdown from early 2021 combined with an aggressive vaccination programme enabled a gradual easing of lockdown measures to be introduced whilst both deaths and reported case numbers reduced to less than 3% of their peak. The emergence of the Delta variant in April 2021 has reversed this trend, and the UK is once again experiencing surging cases, albeit with reduced average severity due to the success of the vaccination rollout. This study presents the results of a modelling exercise which simulates the progression of the pandemic in the UK through projection of daily case numbers as lockdown lifts. Methods: A simulation model based on the Susceptible-Exposed-Infected-Recovered structure was built. A timeline of UK lockdown measures was used to simulate the changing restrictions. The model was tailored for the UK, with some values set based on research and others obtained through calibration against 16 months of historical data. Results: The model projects that if lockdown restrictions are lifted in July 2021, UK COVID-19 cases will peak at hundreds of thousands daily in most viable scenarios, reducing in late 2021 as immunity acquired through both vaccination and infection reduces the susceptible population percentage. Further lockdown measures can be used to reduce daily cases. Other than the ever-present threat of the emergence of new variants, the most significant unknown factors affecting the profile of the pandemic in the UK are the length and strength of immunity, with daily peak cases over 50% higher if immunity lasts 8 months compared to 12 months. Another significant factor is the percentage of unreported cases. The reduced case severity associated with vaccination may lead to a higher proportion of unreported mild or asymptomatic cases, meaning that unmanaged infections resulting from unknown cases will continue to be a major source of infection. Conclusions: Further research into the length and strength of both recovered and vaccinated COVID-19 immunity is critical to delivering more accurate projections from models, thus enabling more finely tuned policy decisions. The model presented in this article, whilst by no means perfect, aims to contribute to greater transparency of the modelling process, which can only increase trust between policy makers, journalists and the general public.


Author(s):  
Carlo Filippo Manzini ◽  
Daria Ottonelli ◽  
Stefania Degli Abbati ◽  
Corrado Marano ◽  
Emilia Angela Cordasco

AbstractThe paper presents the comparison of the results of non-linear static analyses performed with different software based on the equivalent frame (EF) modelling approach on a simple two-story unreinforced masonry building with rigid diaphragms. This study is part of a wider research activity carried out in the framework of the Italian Network of Seismic Laboratories (ReLUIS) projects, funded by the Italian Department of Civil Protection. Different configurations have been considered varying the layout of the openings on the bearing walls and the structural details. The EF models have been defined adopting as much as possible common assumptions, in order to reduce the epistemic modelling uncertainties and to facilitate the interpretation of the differences in the results obtained by the software. The comparison involved different aspects: the global scale response, in terms of capacity curves, the predicted damage pattern as well as checks at the local scale, in terms of distribution of the generalized forces. Moreover, in order to assess the reliability of the obtained results, the numerical predictions have been compared to an analytical upper bound reference solution. Finally, the sensitivity of the numerical response to the criterion adopted for the EF idealization of masonry walls has been investigated.


2021 ◽  
Author(s):  
Christo Venter ◽  
Hambeleleni Davids ◽  
Andreas Kopp ◽  
Michael Backes

2021 ◽  
Vol 14 (3) ◽  
pp. 1595-1614
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
Emmanuel Cosme ◽  
Clément Albergel ◽  
Louis-François Meunier ◽  
...  

Abstract. Monitoring the evolution of snowpack properties in mountainous areas is crucial for avalanche hazard forecasting and water resources management. In situ and remotely sensed observations provide precious information on the state of the snowpack but usually offer limited spatio-temporal coverage of bulk or surface variables only. In particular, visible–near-infrared (Vis–NIR) reflectance observations can provide information about the snowpack surface properties but are limited by terrain shading and clouds. Snowpack modelling enables the estimation of any physical variable virtually anywhere, but it is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of information and to propagate information from observed areas to non-observed areas. Here, we present CrocO (Crocus-Observations), an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow (HS) and Vis–NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties and a particle filter (PF) to reduce them. The PF is prone to collapse when assimilating too many observations. Two variants of the PF were specifically implemented to ensure that observational information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Feasibility testing experiments are carried out in an identical twin experiment setup, with synthetic observations of HS and Vis–NIR reflectances available in only one-sixth of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improvement of the snow water equivalent continuous rank probability score (CRPS) of 60 % when assimilating HS with a 40-member ensemble and an average 20 % CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant improvements are also obtained outside the observation domain. These promising results open a possibility for the assimilation of real observations of reflectance or of any snowpack observations in a spatialised context.


2021 ◽  
Vol 503 (4) ◽  
pp. 4892-4907
Author(s):  
Davide Grassi ◽  
A Mura ◽  
G Sindoni ◽  
A Adriani ◽  
S K Atreya ◽  
...  

ABSTRACT We analyse spectra measured by the Jovian Infrared Auroral Mapper (JIRAM, a payload element of the NASA Juno mission) in the 3150–4910 cm−1 (2.0–3.2 μm)  range during the perijiove passage of 2016 August. Despite modelling uncertainties, the quality and the relative uniformity of the data set allow us to determine several parameters characterizing the Jupiter’s upper troposphere in the latitude range of 35°S–30°N. Ammonia relative humidity at 500 millibars varies between 5 per cent to supersaturation beyond 100 per cent for about 3 per cent of the processed spectra. Ammonia appears depleted over belts and relatively enhanced over zones. Local variations of ammonia, arguably associated with local dynamics, are found to occur in several locations on the planet (Oval BA, South Equatorial Belt). Cloud altitude, defined as the level where aerosol opacity reaches unit value at 3650 cm−1 (2.74 μm), is maximum over the Great Red Spot (>20 km  above the 1 bar  level) and the zones (15 km),  while it decreases over the belts and towards higher latitudes. The aerosol opacity scale height suggests more compact clouds over zones and more diffuse clouds over belts. The integrated opacity of clouds above the 1.3-bar pressure level is found to be minimum in regions where thermal emission of the deeper atmosphere is maximum. The opacity of tropospheric haze above the 200-mbar level also increases over zones. Our results are consistent with a Hadley-type circulation scheme previously proposed in literature for belts and zones, with clear hemisphere asymmetries in cloud and haze.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 942
Author(s):  
Myada Shadoul ◽  
Hassan Yousef ◽  
Rashid Al Abri ◽  
Amer Al-Hinai

Three-phase inverters are widely used in grid-connected renewable energy systems. This paper presents a new control methodology for grid-connected inverters using an adaptive fuzzy control (AFC) technique. The implementation of the proposed controller does not need prior knowledge of the system mathematical model. The capabilities of the fuzzy system in approximating the nonlinear functions of the grid-connected inverter system are exploited to design the controller. The proposed controller is capable to achieve the control objectives in the presence of both parametric and modelling uncertainties. The control objectives are to regulate the grid power factor and the dc output voltage of the photovoltaic systems. The closed-loop system stability and the updating laws of the controller parameters are determined via Lyapunov analysis. The proposed controller is simulated under different system disturbances, parameters, and modelling uncertainties to validate the effectiveness of the designed controller. For evaluation, the proposed controller is compared with conventional proportional-integral (PI) controller and Takagi–Sugeno–Kang-type probabilistic fuzzy neural network controller (TSKPFNN). The results demonstrated that the proposed AFC showed better performance in terms of response and reduced fluctuations compared to conventional PI controllers and TSKPFNN controllers.


2021 ◽  
Author(s):  
Joffrey Dumont Le Brazidec ◽  
Marc Bocquet ◽  
Olivier Saunier ◽  
Yelva Roustan

Abstract. Using a Bayesian framework in the inverse problem of estimating the source of an atmospheric release of a pollutant has proven fruitful in recent years. Through Markov chain Monte Carlo (MCMC) algorithms, the statistical distribution of the release parameters such as the location, the duration, and the magnitude as well as the likelihood covariances can be sampled so as to get a complete characterisation of the source. In this study, several approaches are described and applied to improve on these distributions, and therefore to get a better representation of the uncertainties. First, a method based on ensemble forecasting is proposed: physical parameters of both the meteorological fields and the transport model are perturbed to create an enhanced ensemble. In order to account for model errors, the importance of ensemble members are represented by weights and sampled together with the other variables of the source. Secondly, the choice of the statistical likelihood is shown to alter the nuclear source assessment, and several suited distributions for the errors are advised. Finally, two advanced designs of the covariance matrix associated to the observation error are proposed. These methods are applied to the case of the detection of Ruthenium 106 of unknown origin in Europe in autumn 2017. A posteriori distributions meant to identify the origin of the release, to assess the source term, to quantify the uncertainties associated to the observations and the model, as well as densities of the weights of the perturbed ensemble, are presented.


Sign in / Sign up

Export Citation Format

Share Document