Enhanced production of pL-controlled recombinant proteins and plasmid stability in Escherichia coli RecA+ strains

1993 ◽  
Vol 29 (3) ◽  
pp. 299-306 ◽  
Author(s):  
A. Benito ◽  
M. Vidal ◽  
A. Villaverde
2003 ◽  
Vol 69 (2) ◽  
pp. 1295-1298 ◽  
Author(s):  
Ki Jun Jeong ◽  
Sang Yup Lee

ABSTRACT During growth of high-cell-density cultures of Escherichia coli, overproduction of recombinant proteins often results in increased stress response, cell filamentation, and growth cessation. Filamentation of cells consequently lowers final achievable cell concentration and productivity of the target protein. Reported here is a methodology that should prove useful for the enhancement of cell growth and protein productivity by the suppression of cell filamentation. By the coexpression of the E. coli ftsA and ftsZ genes, which encode key proteins in cell division, growth of recombinant strains as well as production of human leptin and human insulin-like growth factor I was improved. Observation of cell morphology revealed that the coexpression of the ftsA and ftsZ genes successfully suppressed filamentation caused by the accumulation of recombinant proteins.


2008 ◽  
Vol 74 (23) ◽  
pp. 7431-7433 ◽  
Author(s):  
Mónica Martínez-Alonso ◽  
Nuria González-Montalbán ◽  
Elena García-Fruitós ◽  
Antonio Villaverde

ABSTRACT We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure.


2005 ◽  
Vol 71 (12) ◽  
pp. 7880-7887 ◽  
Author(s):  
Sang Jun Lee ◽  
Dong-Yup Lee ◽  
Tae Yong Kim ◽  
Byung Hun Kim ◽  
Jinwon Lee ◽  
...  

ABSTRACT Comparative analysis of the genomes of mixed-acid-fermenting Escherichia coli and succinic acid-overproducing Mannheimia succiniciproducens was carried out to identify candidate genes to be manipulated for overproducing succinic acid in E. coli. This resulted in the identification of five genes or operons, including ptsG, pykF, sdhA, mqo, and aceBA, which may drive metabolic fluxes away from succinic acid formation in the central metabolic pathway of E. coli. However, combinatorial disruption of these rationally selected genes did not allow enhanced succinic acid production in E. coli. Therefore, in silico metabolic analysis based on linear programming was carried out to evaluate the correlation between the maximum biomass and succinic acid production for various combinatorial knockout strains. This in silico analysis predicted that disrupting the genes for three pyruvate forming enzymes, ptsG, pykF, and pykA, allows enhanced succinic acid production. Indeed, this triple mutation increased the succinic acid production by more than sevenfold and the ratio of succinic acid to fermentation products by ninefold. It could be concluded that reducing the metabolic flux to pyruvate is crucial to achieve efficient succinic acid production in E. coli. These results suggest that the comparative genome analysis combined with in silico metabolic analysis can be an efficient way of developing strategies for strain improvement.


Biomédica ◽  
2016 ◽  
Vol 36 ◽  
Author(s):  
Ángela Patricia Guerra ◽  
Eliana Patricia Calvo ◽  
Moisés Wasserman ◽  
Jacqueline Chaparro-Olaya

<p><strong>Introducción.</strong> La producción de proteínas recombinantes es fundamental para el estudio funcional de proteínas de <em>Plasmodium</em> <em>falciparum</em>. Sin embargo, las proteínas recombinantes de <em>P</em>. <em>falciparum</em> están entre las más difíciles de expresar y cuando lo hacen usualmente se agregan dentro de cuerpos de inclusión insolubles.</p><p><strong>Objetivo.</strong> Evaluar la producción de cuatro proteínas de <em>P. falciparum</em>, usando como sistema de expresión dos cepas de <em>Escherichia coli </em>genéticamente modificadas para favorecer la producción de proteínas heterólogas y establecer una reserva de proteínas recombinantes puras y solubles y producir anticuerpos policlonales a partir de ellas.<strong></strong></p><p><strong>Materiales y métodos.</strong> Las proteínas recombinantes, las cuales correspondían a secuencias parciales de PfMyoA (Miosina-A) y PfGAP50 (proteína-asociada a glideosoma-50 kDa) y a las secuencias completas de PfMTIP (proteína de interacción con Miosina-A) y PfGAP45 (proteína asociada a glideosoma-45 kDa), fueron expresadas como proteínas de fusión con GST y luego purificadas y usadas para producir anticuerpos policlonales en ratón.</p><p><strong>Resultados.</strong> La expresión de las proteínas recombinantes fue mucho más eficiente en la cepa BL21-CodonPlus (la cual expresa tRNAs escasos en las bacterias silvestres), que en la cepa BL21-pG-KJE8. En contraste, aunque la cepa BL21-pG-KJE sobreexpresa chaperonas, no redujo la formación de cuerpos de inclusión. <strong>Conclusión.</strong> El uso de cepas de <em>E</em>. <em>coli</em> genéticamente modificadas fue fundamental para alcanzar altos niveles de expresión de las cuatro proteínas recombinantes evaluadas y permitió obtener dos de ellas en forma soluble. La estrategia utilizada permitió expresar cuatro proteínas recombinantes de <em>P</em>. <em>falciparum</em> en cantidad suficiente para inmunizar ratones y producir anticuerpos policlonales, y además conservar proteína pura y soluble de dos de ellas, para ensayos futuros.</p>


Sign in / Sign up

Export Citation Format

Share Document